DOI QR코드

DOI QR Code

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei (College of Civil Engineering, Tongji University) ;
  • Chen, Yiyi (College of Civil Engineering, Tongji University)
  • Received : 2005.01.28
  • Accepted : 2005.09.07
  • Published : 2005.12.20

Abstract

In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

Keywords

References

  1. ANSYS (2002), ANSYS User's Manual Revision 6.1, ANSYS, Inc., Canonsburg, Pennsylvania
  2. Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), 'Classification system for beam-column connections', J. Struct. Eng.. 116(11), 3059-3076 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3059)
  3. Choo, Y.S., Liang, J.X., van der Vegte, GJ. and Liew, J.Y.R. (2004), 'Static strength of doubler plate reinforced CHS X-joints loaded by in-plane bending', J. Constructional Steel Research, 60, 1725-1744 https://doi.org/10.1016/j.jcsr.2004.05.004
  4. Choo, Y.S., Liang, J.X., van der Vegte, GJ. and Liew, J.Y.R. (2004), 'Static strength of collar plate reinforced CHS X-joints loaded by in-plane bending', J. Constructional Steel Research, 60, 1745-1760 https://doi.org/10.1016/j.jcsr.2004.05.005
  5. Chen, Y.Y. and Wang, W. (2003), 'Flexural behavior and resistance of uni-planar KK and X tubular joints', J. Steel & Composite Structures, 3(2), 123-140 https://doi.org/10.12989/scs.2003.3.2.123
  6. Dexter, E.M., Lee, M.M.K. and Kirkwood, M.G. (1996), 'Overlapped K joints in circular hollow sections under axial loading', J. Offshore Mechanics and Arctic Engineering, 118(2), 53-61 https://doi.org/10.1115/1.2828801
  7. EN 1993-1-1, Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings, CEN, 2005
  8. EN 1993-1-8, Eurocode 3: Design of Steel Structures, Part 1-8: Design of Joints, CEN, 2005
  9. Fessler, H. and Mockford, P.B. et al. (1986), 'Parametric equations for the flexibility matrices of single brace tubular joints in offshore structures', Proc. Instn Civ. Engrs, Part 2, 81, 675-696
  10. Frater, G.S. and Packer, J.A. (1992), 'Modelling of hollow structural section trusses', Can. J. Civ. Eng., 19, 947- 959 https://doi.org/10.1139/l92-113
  11. France, J.E., Davison, J.B. and Kirby, P.A. (1999), 'Strength and rotational stiffness of simple connections to tubular columns using flowdrill connectors', J. Constructional Steel Research, 50, 15-34 https://doi.org/10.1016/S0143-974X(98)00236-3
  12. Furukawa, Y., Makino, Y. and Kurobane, Y. (1998), 'Study on out-of-plane rotational stiffness of CHS joints and effective column length of web members in CHS lattice girder', Tubular Structures VIII, Singapore, 457-463
  13. Gazzola, F. and Lee, M.M.K. (2001), 'A numerical investigation into the static strength of CHS K-joints under in-plane moment loading', Proc. of 9rd Int. Symposium on Tubular Structures, Diisseldorf, Germany, 175-184
  14. Goto, Y. and Miyashita, S. (1998), 'Classification system for rigid and semirigid connections', J. Struct. Eng., 124(7), 750-757 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(750)
  15. Hasan, R., Kishi, N. and Chen, W.F. (1998), 'A new nonlinear connection classification system', J. Constructional Steel Research, 47, 119-140 https://doi.org/10.1016/S0143-974X(98)80105-3
  16. Healy, B.E. and Zettlemoyer, N. (1993), 'In-plane bending strength of circular tubular joints', Proc. of 5rd Int. Symposium on Tubular Structures, Nottingham, U. K., 325-344
  17. Healy, B.E. and Zettlemoyer, N. (1994), 'Significant issues related to the in-plane bending strength of circular tubular joints', Proc. of 6rd Int. Symposium on Tubular Structures, Melbourne, Australia, 191-198
  18. Hu, Y.R., Chen, B.Z. and Ma, J.P. (1993), 'An equivalent element representing local flexibility of tubular joints in structural analysis of offshore platforms', Comput. Struct., 47(6), 957-969 https://doi.org/10.1016/0045-7949(93)90300-3
  19. Hyde, T.H. and Leen, S.B. (1997), 'Prediction of elastic-plastic displacement of tubular joints under combined loading using an energy-based approach', J. Strain Analysis, 32(6), 435-453 https://doi.org/10.1243/0309324971513544
  20. Kurobane, Y. (1998), 'Static behavior and earthquake resistant design of welded tubular structures', Mechanics and Design of Tubular Structures, Wien, Austria: Springer-Velag, 53-116
  21. Kurobane, Y., Makino, Y. and Ogawa, K. et al. (1991), 'Capacity of CHS T-joints under combined OPB and axial loads and its interactions with frame behavior', Proc. of 4rd Int. Symposium on Tubular Structures, Delft, Netherlands, 412-423
  22. Lee, M.M.K. and Dexter, E.M. (1994), 'A parametric study on the out-of-plane bending strength of T/Y joints', Proc. of 6rd Int. Symposium on Tubular Structures, Melbourne, Australia, 433-440
  23. Leen, S.B. and Hyde, T.H. (2000), 'On the prediction of elastic-plastic generalized load-displacement responses for tubular joints', J. Strain Analysis, 35(3), 205-219 https://doi.org/10.1243/0309324001514350
  24. Makino, Y., Kurobane, Y. and Ochi, K. et al. (1996), 'Database of test and numerical analysis results for unstiffened tubular joints', IIW Doc. XV-E-96-220
  25. Nethercot, D.A., Li, T.Q. and Ahmed, B. (1998), 'Unified classification system for beam-to-column connections', J. Constructional Steel Research, 45(1), 39-65 https://doi.org/10.1016/S0143-974X(97)00064-3
  26. Saidani, M. and Coutie, M.G (1993), 'Secondary moments in RHS lattice girders', Proc. of 5rd Int. Symposium on Tubular Structures, Nottingham, U. K., 551-559
  27. Ure, A. and Grundy, P. et al. (1993), 'Flexibility coefficients of tubular connections', Tubular Structures, London
  28. Vegte van der, G.J. (1995), The Static Strength of Uniplanar and Multiplanar Tubular T and X-joints, Delft, The Netherlands: Delft University Press
  29. Wardenier, J., Kurobane, Y, Packer, J. A., Dutta, D. and Yeomans, N. (1991), Design Guide for Circular Hollow Section (CHS) Joints under Predominantly Static Loading, Verlag TUV Rheinland, Koln
  30. Yu, Y. (1997), The Static Strength of Uniplanar and Multiplanar Connections in Rectangular Hollow Sections, Delft, The Netherlands: Delft University Press

Cited by

  1. Parametric analysis of mechanical behavior of steel planar tubular truss under fire vol.67, pp.1, 2011, https://doi.org/10.1016/j.jcsr.2010.07.012
  2. Tubular structures in China: state of the art and applications vol.163, pp.6, 2010, https://doi.org/10.1680/stbu.2010.163.6.417
  3. Hysteretic behaviour of tubular joints under cyclic loading vol.63, pp.10, 2007, https://doi.org/10.1016/j.jcsr.2006.12.002
  4. Evaluation of elastic in-plane flexural rigidity of unstiffened multiplanar CHS X-joints vol.14, pp.1, 2014, https://doi.org/10.1007/s13296-014-1003-7
  5. Axial tensile behavior and strength of welds for CHS branches to SHS chord joints vol.115, 2015, https://doi.org/10.1016/j.jcsr.2015.08.044
  6. Experimental and parametric study on the post-fire behavior of tubular T-joint vol.70, 2012, https://doi.org/10.1016/j.jcsr.2011.07.018
  7. Parametric formulae for axial stiffness of CHS X-joints subjected to brace axial tension vol.12, pp.2, 2011, https://doi.org/10.1631/jzus.A1000022
  8. Analysis of Influence of Design Parameters on Ultimate Bearing Capacity of the Steel Spatial Tubular Joint vol.243-249, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.243-249.294
  9. Semi-rigidity Connection Model for Unstiffened CHS X-type Joints Subjected Out-of-plane Bending pp.2093-6311, 2018, https://doi.org/10.1007/s13296-018-0168-x
  10. Static behavior of steel tubular structures considering local joint flexibility vol.24, pp.4, 2005, https://doi.org/10.12989/scs.2017.24.4.425
  11. Computational Model for the Flexural Capacity and Stiffness of Eccentric RHS X-Connections under Brace Out-of-Plane Bending Moment vol.146, pp.3, 2020, https://doi.org/10.1061/(asce)st.1943-541x.0002507
  12. Study on the brace axial force-local deformation behavior of unstiffened CHS X-joints vol.91, pp.1, 2005, https://doi.org/10.1007/s00419-020-01764-6
  13. Numerical Analysis of Axial Cyclic Behavior of FRP Retrofitted CHS Joints vol.14, pp.3, 2005, https://doi.org/10.3390/ma14030648