• 제목/요약/키워드: Hole transport materials

검색결과 127건 처리시간 0.029초

전도성 고분자를 Buffer층으로 사용한 유기 발광 소자의 제작과 특성 연구 (Characteristics of organic electroluminescent devices using conducting polymer materials with buffer layers)

  • 이호식;박종욱;김태완;강도열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. One of the problems of such device is a lifetime, where a degradation of the cell is possibly due to an organic layer's thickness, morphology and interface with electrode. In this study, light-emitting organic electroluminescent devices were fabricated using Alq$_3$(8-hydroxyquinolinate aluminum) and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1-1'-biphenyl]-4,4'-diamine).Where Alq$_3$ is an electron-transport and emissive layer, TPD is a hole-transport layer. The cell structure is ITO/TPD/Alq$_3$/Al and the cell is fabricated by vacuum evaporation method. In a measurement of current-voltage characteristics, we obtained a turn-on voltage at about 9 V. And we used other buffer layer of PPy(Polypyrrole) with ITO/PPy/TPD/Alq$_3$/Al structure. We observed a surface morphology by AFM(Atomic Force Microscopy), UV/visible absorption spectrum, and PL(Photoluminescence) spectrum. We obtained the UV/visible absorption peak at 358nm in TPD and at 359nm in Alq$_3$, and at 225nm and the PL peaks at 410nm in TPD and at 510nm in Alq$_3$ and at 350nm. We also studied EL spectrum in the cell structure of ITO/TPD/Alq$_3$/Al and ITO/PPy/TPD/Alq$_3$/Al and we observed the EL spectrum peak at 510nm from our cell

  • PDF

Computer-simulation with Different Types of Bandgap Profiling for Amorphous Silicon Germanium Thin Films Solar Cells

  • 조재현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2014
  • Amorphous silicon alloy (a-Si) solar cells and modules have been receiving a great deal of attention as a low-cost alternate energy source for large-scale terrestrial applications. Key to the achievement of high-efficiency solar cells using the multi-junction approach is the development of high quality, low band-gap materials which can capture the low-energy photons of the solar spectrum. Several cell designs have been reported in the past where grading or buffer layers have been incorporated at the junction interface to reduce carrier recombination near the junction. We have investigated profiling the composition of the a-SiGe alloy throughout the bulk of the intrinsic material so as to have a built-in electrical field in a substantial portion of the intrinsic material. As a result, the band gap mismatch between a-Si:H and $a-Si_{1-x}Ge_x:H$ creates a barrier for carrier transport. Previous reports have proposed a graded band gap structure in the absorber layer not only effectively increases the short wavelength absorption near the p/i interface, but also enhances the hole transport near the i-n interface. Here, we modulated the GeH4 flow rate to control the band gap to be graded from 1.75 eV (a-Si:H) to 1.55 eV ($a-Si_{1-x}Ge_x:H$). The band structure in the absorber layer thus became like a U-shape in which the lowest band gap was located in the middle of the i-layer. Incorporation of this structure in the middle and top cell of the triple-cell configuration is expected to increase the conversion efficiency further.

  • PDF

정공 수송층(TPD) 증착 속도에 따른 유기 발광 소자의 전기적 특성 (Electrical Characteristics of OLEDs depending on the Deposition Rate of Hole Transport Layer(TPD))

  • 김원종;이영환;이상교;박희두;조경순;김태완;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.87-88
    • /
    • 2008
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum$(Alq_3)$/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of TPD materials. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5\times10^{-6}$Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of 2.5 $\AA$/s. When the deposition rate of TPD increased from 1.5 to 3.0 $\AA$/s, we found that the average roughness is rather smoother, external quantum efficiency is superior to the others when the deposition rate of TPD is 2.5 $\AA$/s. Compared to the ones from the devices made with the deposition rate of TPD 3.0 $\AA$/s, the external quantum efficiency was improved by a factor of eight.

  • PDF

전하선택형 태양전지의 연구개발 동향 (Research and Development Trend of Carrier Selective Energy Contact Solar Cells)

  • 조은철;조영현;이준신
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

금속염을 이용한 염료감응 태양전지의 고체전해질의 전기화학적 특성 (Electrochemical properties of metal salts polymer electrolyte for DSSC)

  • ;;구할본
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

  • PDF

전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구 (A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode)

  • 이동운;조의식;전용민;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Effects of Hole Transport Layer Using Au-ionic Doping SWNT on Efficiency of Organic Solar Cells

  • Min, Hyung-Seob;Jeong, Myung-Sun;Choi, Won-Kook;Kim, Sang-Sig;Lee, Jeon-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.434-434
    • /
    • 2012
  • Despite recent efforts for fabricating flexible transparent conducting films (TCFs) with low resistance and high transmittance, several obstacles to meet the requirement of flexible displays still remain. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. Recently, it has been demonstrated that acid treatment is an efficient method for surfactant removal. However, the treatment has been reported to destroy most SWNT. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance by Au-ionic doping treatment on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effects of hole transport interface layer using Au-ionic doping SWNT on the performance of organic solar cells were investigated.

  • PDF

유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해 (Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors)

  • 한송연;김수진;최현호
    • 접착 및 계면
    • /
    • 제22권4호
    • /
    • pp.144-152
    • /
    • 2021
  • 유기반도체와 게이트 절연체 간 계면전하이동을 이해하는 것은 고성능 유기메모리, 고안정성 유기전계효과 트랜지스터 (이하 유기트랜지스터) 개발에 기여할 수 있다. 본 연구에서는 계면 간 전하이동의 특이거동, 즉 홀전하가 유기반도체에서 고분자절연체로 이동되어 편재화되는 것이 편재화 준위간의 커플링에 의해 비선형적으로 가속화될 수 있음을 최초로 밝혀내었다. 이의 규명을 위해 rubrene 단결정과 Mylar 절연체를 기반으로 한 유기트랜지스터를 vacuum lamination 공정으로 제작하여 반도체-절연체 계면의 반복적인 전사와 박리에도 안정적인 소자를 개발하였다. Rubrene 단결정과 Mylar film의 표면을 각각 광유도 산소 확산법과 UV-오존 처리를 통해 결함을 생성시켰다. 그 결과, 계면 간 전하이동과 이에 의한 바이어스 스트레스 효과가 rubrene과 Mylar가 가진 편재화 준위 간 커플링에 의해 비선형적으로 급격하게 가속화되었음을 관측하였다. 특히, rubrene 단결정에 있는 적은 밀도의 편재화 준위가 계면 간 전하이동을 촉진하는데 가교역할을 함을 밝혀내었다

Green Phosphorescent OLED Without a Hole/Exciton Blocking Layer Using Intermixed Double Host and Selective Doping

  • Kim, Won-Ki;Kim, Hyung-Seok;Shin, Hyun-Kwan;Jang, Ji-Geun
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.240-244
    • /
    • 2009
  • Simple and high efficiency green phosphorescent devices using an intermixed double host of 4, 4', 4"-tris(N-carbazolyl) triphenylamine [TCTA], 1, 3, 5-tris (N-phenylbenzimiazole-2-yl) benzene [TPBI], phosphorescent dye of tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and selective doping in the TPBI region were fabricated, and their electro luminescent characteristics were evaluated. In the device fabrication, layers of $70{\AA}$-TCTA/$90{\AA}$-$TCTA_[0.5}TPBI_{0.5}$/$90{\AA}$-TPBI doped with $Ir(ppy)_3$ of 8% and an undoped layer of $50{\AA}$-TPBI were successively deposited to form an emission region, and SFC137 [proprietary electron transporting material] with three different thicknesses of $300{\AA}$, $500{\AA}$, and $700{\AA}$ were used as an electron transport layer. The device with $500{\AA}$-SFC137 showed the luminance of $48,300\;cd/m^2$ at an applied voltage of 10 V, and a maximum current efficiency of 57 cd/A under a luminance of $230\;cd/m^2$. The peak wavelength in the electroluminescent spectral and color coordinates on the Commission Internationale de I'Eclairage [CIE] chart were 512 nm and (0.31, 0.62), respectively.

자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성 (Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire)

  • 심우영;김도헌;이경일;전계진;이우영;장준연;한석희;정원용
    • 한국자기학회지
    • /
    • 제17권4호
    • /
    • pp.166-171
    • /
    • 2007
  • 단결정 Bi단일 나노선의 정상 자기 저항(ordinary magnetoresistance) 특성을 $2{\sim}300K$에서 4 단자법으로 측정하였다. I-V 측정을 통해 전기적 오믹 형성을 확인하였고, 2 K과 300 K에서 비저항이 각각 $1.0{\times}10^{-4}$$8.2{\times}10^{-5}{\Omega}{\cdot}cm$으로 측정되었다. 수직(transverse) 및 수평(longitudinal) 자기저항비(MR ratio)가 110 K와 2 K에서 각각 현재까지 보고된 MR 중 가장 큰 2496%와 -38%으로 관찰되었으며, 이 결과는 자발 성장법으로 성장된 Bi 나노선의 결정성이 매우 우수한 단결정임을 증명한다. simple two band(STB) 모델을 통해 Bi 나노선의 수직 및 수평 정상 자기 저항(OMR) 거동이 온도에 따른 페르미 준위(Fermi level)와 밴드 겹침(band overlap)등의 전자 구조 변화 및 운반자 농도 변화로 잘 설명된다.