DOI QR코드

DOI QR Code

Research and Development Trend of Carrier Selective Energy Contact Solar Cells

전하선택형 태양전지의 연구개발 동향

  • Cho, Eun-Chel (School of Electronic & Electrical engineering, Sungkyunkwan University) ;
  • Cho, Young Hyun (School of Electronic & Electrical engineering, Sungkyunkwan University) ;
  • Yi, Junsin (School of Electronic & Electrical engineering, Sungkyunkwan University)
  • 조은철 (전자전기공학부, 성균관대학교) ;
  • 조영현 (전자전기공학부, 성균관대학교) ;
  • 이준신 (전자전기공학부, 성균관대학교)
  • Received : 2018.04.06
  • Accepted : 2018.06.20
  • Published : 2018.06.30

Abstract

The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

Keywords

References

  1. M. A. Green, Y. Hishikawa, W. Warta, Ewan D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. H. Ho-Baillie, "Solar cell efficiency tables (version 50)". Prog. Photovolt., Vol. 25, No. 7, pp. 668-676, 2017. https://doi.org/10.1002/pip.2909
  2. P. Gao, Z. Yang, J. He, J. Yu, P. Liu, J. Zhu, Z. Ge, J. Ye, "Dopant-Free and Carrier- Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives", Advanced Science, 1700547, 2017.
  3. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%". Nat Energy. 2, 17032, 2017. https://doi.org/10.1038/nenergy.2017.32
  4. D. Zielke, J. Hendrik Petermann, F. Werner, B. Veith, R. Brendel, J. Schmidt, "Contact passivation in silicon solar cells using atomic-layer-deposited aluminum oxide layers", Physica Status Solidi (RRL) Rapid Research Letters, Vol. 5, No. 8, pp. 298, 2011. https://doi.org/10.1002/pssr.201105285
  5. D. L. Young, W. Nemeth, S. Grover, A. Norman, H. Yuan, B. Lee, V. LaSalvia, P. Stradins, "Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides", Energy Procedia, 55, 733, 2014. https://doi.org/10.1016/j.egypro.2014.08.053
  6. E. Yablonovitch, T. Gmitter, "A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell", Appl. Phys. Lett. 47, 1211, 1985. https://doi.org/10.1063/1.96331
  7. A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, "n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation". Sol. Energy Mater. and Sol. Cells. 173, 96, 2017. https://doi.org/10.1016/j.solmat.2017.05.042
  8. F. Feldmanna, C. Reichel, R. Muller, M. Hermle, The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells, Sol. Energy mater. and Sol. cell, 159, 265, 2017. https://doi.org/10.1016/j.solmat.2016.09.015
  9. F. Haase1, F. Kiefer, S. Schäfer, C. Kruse1, J. Krugener, R. Brendel, R. Peibst, "Interdigitated back contact solar cells with polycrystalline silicon on oxide passivating contacts for both polarities", Jpn. J. Appl. Phys. 56 08MB15, 2017. https://doi.org/10.7567/JJAP.56.08MB15
  10. ISFH 홈페이지, https://isfh.de/en/26-1-record-efficiency-for-p-type-crystalline-si-solar-cells/
  11. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer, IEEE J. of Photovoltaics, Vol. 4, No. 1, pp. 96, 2014. https://doi.org/10.1109/JPHOTOV.2013.2282737
  12. M. K. Stodolny, J. Anker, B. L. J. Geerligs, G. J. M. Janssen, B. W. H. van de Loo, J. Melskens, R. Santbergen, O. Isabella, J. Schmitz, M. Lenes, J. Luchies, W. M. M. Kessels, I. Romijn, "Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells", Sol. Energy mater. and Sol. cell, 124, 635, 2017.
  13. W. Nemeth, V. LaSalvia, M. R. Page, E. L. Warren, A. Dameron, A. G. Norman, B. G. Lee, D. L. Young, P. Stradins, "Implementation of Tunneling Pasivated Contacts into Industrially Relevant n-Cz Si Solar Cells", 42nd IEEE PVSC, 2015.
  14. Y. Tao, V. Upadhyaya, C.-W. Chen, A. Payne, E. L. Chang, A. Upadhyaya, A. Rohatgi, "Large area tunnel oxide passivated rear contact n-type Si solar cells with 21.2% efficiency", Prog. in Photovol., Vol. 24, No. 6, pp. 830-835, 2016. https://doi.org/10.1002/pip.2739
  15. X. Yang, K. Weber, Z. Hameiri, S. De Wolf, "Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells", Prog. Photovol., Vol. 25, No. 11, pp. 896 2017. https://doi.org/10.1002/pip.2901
  16. Y. Wan, C. Samundsett, J. Bullock, T. Allen, M. Hettick, D. Yan, P. Zheng, X. Zhang, J. Cui, J. McKeon, A. Javey, A. Cuevas, "Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells", ACS Appl. Mater. Interfaces, Vol. 8, No. 23, pp. 14671-14677, 2016. https://doi.org/10.1021/acsami.6b03599
  17. J. Bullock, M. Hettick, J. Geissbuhler, A. J. Ong, T. Allen, C. M. Sutter-Fella, T. Chen, H. Ota, E. W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, A. Javey, Efficient silicon solar cells with dopant-free asymmetric heterocontacts, Nat. Energy, Vol. 1, pp. 15031, 2016. https://doi.org/10.1038/nenergy.2015.31
  18. J. Bullock, Y. Wan, Z. Xu, S. Essig, M. Hettick, H. Wang, W. Ji, M. Boccard, A. Cuevas, C. Ballif, A. Javey, "Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%", ACS Energy Lett. Vol. 3, pp. 508, 2018. https://doi.org/10.1021/acsenergylett.7b01279
  19. C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, A. Javey, Nano Lett., Vol. 14, pp. 967, 2014. https://doi.org/10.1021/nl404389u
  20. C. Battaglia, S. M. de Nicolas, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, "Silicon heterojunction solar cell with passivated hole selective MoOx contact", Appl. Phys. Lett., 104, 113902, 2014. https://doi.org/10.1063/1.4868880
  21. J. Geissbuhler, J. Werner, S. M. Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, C. Ballif, "22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector", Appl. Phys. Lett., 107, 081601, 2015. https://doi.org/10.1063/1.4928747