• Title/Summary/Keyword: Hole density

Search Result 442, Processing Time 0.027 seconds

Influence of Process Variables on Barrel Electroplating (바렐도금에 미치는 공정변수의 영향)

  • 최태규;유황룡;장시성;황운석
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.295-304
    • /
    • 2002
  • In this study, the effect of the diameter and the number of barrel hole on the total area of barrel hole were calculated and analyzed. And the effects of applied current density, rotational speed of the barrel, size and number of barrel hole, and the volume of plating materials on the distribution of plating thickness were experimented and discussed by the barrel electroplating of the tube type brass specimens in a sulfamate nickel barrel solution. The effect of barrel hole size and barrel hole area on the throwing power was also discussed.

The Characteristices of the 4,4',4'-trifluoro-triazine as a hole Blocking Material in Electroluminescent Devices (전계발광 소자에서 정공 차단 물질로서의 4,4',4'-trifluoro-triazine의 특성)

  • Shin, Ji-Won;Shin, Dong-Muyng;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.120-125
    • /
    • 2000
  • The tfTZ(4,4',4''-trifluoro-triazine) was used as a hole blocking material for the electroluminescent devices(ELDs) in this study. In general, the holes are outnumbered the electrons in hole transport and emitting layers because the hole transport is more efficient in most organic ELDs. The hole blocking layer are expected to control the excess holes to increase the recombination of holes and electrons and to decrease current density. The former study using the 2,4,6-triphenyl-1,3,5-triazine(TTA) as hole blocking layer showed that the TTA did not form stable films with vapor deposition technique. The tfTZ can generate stable evaporated films, moreover the fluorine group can lower the highest occupied molecular orbital(HOMO) level, which produces the energy barrier for the holes. The tfTZ has high electron affinities according to the data by the Cyclic-Voltammety(CV) method, which is developed for the measurement of HOMO and lowest occupied molecular orbital(LUMO) level of organic thin films. The lowered HOMO level is made the tfTZ to be applied for a hole blocking layer in ELDs. We fabricated multilayer ELDs with a structure of ITO/hole blocking layer(HBL)/hole transporting layer(HTL)/emitting layer/electrode. The hole blocking properties of this devices is confirmed from the lowered current density values compared with that without hole blocking layer.

Electronic Structure Calculations of Cubane-type Cu4 Magnetic Molecule (Cubane 구조를 가진 Cu4 분자자성체의 전자구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.119-123
    • /
    • 2016
  • We have studied electronic and magnetic structure of cubane-type Cu magnetic molecule using density functional method. The calculated density of states show that Cu has 3d $x^2-y^2$ hole orbital because of short distances between Cu atom and in-plane 4 ligand atoms. The calculated total energy with in-plane antiferromagnetic spin configuration is lower than those of ferromagnetic configurations. The calculated exchange interaction J between in-plane Cu atoms is much larger than those between out-plane Cu atoms, since the $x^2-y^2$ hole orbital ordering of Cu 3d orbitals induces strong super-exchange interaction between in-plane Cu atoms.

Evolution of Chronic Subdural Hematoma based on Brain CT findings and Appropriate Treatment Methods (만성 경막하 혈종의 성장에 대한 뇌 CT 소견 및 치료 방침)

  • Lee, Young Bae
    • Journal of Trauma and Injury
    • /
    • v.25 no.4
    • /
    • pp.209-216
    • /
    • 2012
  • Purpose: The objectives of this study are to classify chronic subdural hematomas based on brain computerized tomographic scan (CT scan) findings and to determine the mechanism of evolution and treatment methods. Methods: One hundred thirty-nine patients who were diagnosed with a chronic subdural hematoma and who available for follow up assessment 6 months post-surgery were analyzed retrospectively. The presence of trauma and past medical history were reviewed and evaluation criteria based on brain CT scan findings were examined. Results: Initial brain CT scans revealed a chronic subdural hematoma in 106 patients, a subdural hygroma in 24 patients, and an acute subdural hematoma in 9 patients. In all cases where the initial acute subdural hematoma had progressed to a chronic subdural hematoma, final was a hypo-density chronic subdural hematoma. In case where the initial subdural hygroma had progressed to a chronic subdural hematoma, the most cases of hematoma were hyper-density and mixed-density chronic subdural hematoma. In total, 173 surgeries were performed, and they consisted of 97 one burr-hole drainages, 70 two burr-hole drainages and 6 craniotomies. Conclusion: This study demonstrates that rebleeding and osmotic effects are mechanisms for enlarging of a chronic subdural hematoma. In most cases, one burr-hole drainage is a sufficient for treatment. However, in cases of mixed or acute-on-chronic subdural hematomas, other appropriate treatment strategies are required.

Characteristic of Friction on Texturing Bearing Steel with Ultrasonic Hole Machine

  • Shin, Mijung;H., Angga Senoaji;Kwon, SoonHong;Chung, SungWon;Kwon, SoonGoo;Park, JongMin;Kim, JongSoon;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We carry out experiments to characterize textured bearing steel with varying hole density and depth. Textured surface is believed to reduce the friction coefficient, and improve performance and wearing caused by third-body contact. We employ three lubrication regime conditions based on the Stribeck curve: boundary lubrication, mixed lubrication, and hydrodynamic lubrication. Ultrasonic machining is an untraditional machining method wherein abrasive grit particles are used. The hammering process on the work piece surface by abrasive provides the desired form. In this study, we create multi-holes on the bearing steel surface for texturing purposes. Holes are formed by an ultrasonic machine with a diameter of 0.534 mm and a depth of about 2-4 mm, and they are distributed on the contact surface with a density between 1.37-2.23%. The hole density over the surface area is an important factor affecting the friction. We test nine types of textured specimens using four times replication and compare them with the untextured specimen using graphs, as well as photographs taken using a scanning electron microscope. We use Analyzes variant in this experiment to find the correlation between each pair of treatments. Finally, we report the effect of hole density and depth on the friction coefficient.

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • Park, Sun-Mi;Kim, Yun-Hak;Lee, Yeon-Jin;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF

Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique (PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구)

  • Kim, Ye Jee;Park, Soon Sang;Rhee, Dong Ho;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.

A Study on the Characteristics of OLEDS Using a New Hole Injection Layer (새로운 정공주입층을 이용한 OLEDs의 특성에 관한 연구)

  • Shim, Hye-Yeon;Jeong, Ji-Hoon;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1046-1049
    • /
    • 2004
  • The improvement in OLEDS performance is correlated with the surface chemical composition, hole injection and electron injection. In this study, a new hole injection material, HIL202(NPB derivatives), was synthesized and the devices with the structure of ITO/HIL202/NPB/$Alq_3$/Liq/Al were fabricated. The devices with a new hole injection material showed the improved current density, luminance and life time then the NPB or conventional hole injection material based OLEDs, due to the improved adhesion morphology between ITO surface and hole injection material.

  • PDF

The Importance of Halogen Bonding: A Tutorial

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.195-197
    • /
    • 2012
  • Halogen atoms in a molecule are traditionally considered as electron donors, since they have unshared electrons. Normally when they are bonded, there are three lone pair electrons. These lone pairs can function as Lewis bases. However, when they are bound to electron withdrawing groups, they can act as Lewis acids. Since the situation is similar hydrogen bonding (HB), this type of interaction is named as halogen bonding (XB). This mainly comes from the uneven distribution of electron density around the halogen atoms. Since the electron density around halogen atom opposite to ${\sigma}$-bond is depleted, its electropositive region is called ${\sigma}$-hole. This ${\sigma}$-hole can attract halogen bond acceptors, requiring more stringent directionality compared to HB. Since this interaction mainly comes from electrostatic origin, the geometry tends to be linear. Since the XB energy is comparable to corresponding HB. Still in its infancy, XB shows a broad range of applicability, with potentially more useful properties, compared to corresponding HB.

Perovskite Solar Cells through Application of Hole Transporting Layers based on Vacuum Thermal Evaporation (진공 열 증착 기반의 정공수송층 적용을 통한 페로브스카이트 태양전지)

  • Kim, Hye Seung;Song, Myoung Hoon
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2022
  • In this study, we investigate organic-inorganic halide perovskite solar cells with a vacuum thermal evaporated hole transporting layer (NPB/MoO3-x). By replacing solution process based Spiro-MeOTAD with vacuum thermal evaporation based NPB/MoO3-x, a thin hole transporting layer was implemented. In addition, parasitic absorption that may occur during the doping process was eliminated by excluding solution process doping. In a solar cell with a thin vacuum thermal evaporated hole transporting layer, the short-circuit current density (Jsc) increased to 23.93 mA/cm2, resulting in the highest power converstion efficiency (PCE) at 18.76%. Considering these results, it is essential to control the thickness of hole transporting layer located at the top in solar cell configuration.