• Title/Summary/Keyword: Hole Boundary

Search Result 222, Processing Time 0.025 seconds

Two-dimensional Elastic Analysis of Doubly Periodic Circular Holes in Infinite Plane

  • Lee, Kang-Yong;Chen, Yi-Zhou
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.655-665
    • /
    • 2002
  • Two-dimensional elastic analysis of doubly periodic circular holes in an infinite plane is given in this paper. Two cases of loading, remote tension and remote shear, are considered. A rectangular cell is cut from the infinite plane. In both cases, the boundary value problem can be reduced to a complex mixed one. It is found that the eigenfunction expansion variational method is efficient to solve the problem. Based on the deformation response under certain loading, the notched medium could be modeled by an orthotropic medium without holes. Elastic properties for the equivalent orthotropic medium are investigated, and the stress concentration along the hole contour is studied. Finally, numerical examples and results are given.

Two-Dimensional Thermo-Viscopiastic Finite Element Analysis of Free Forginf for Large Ingot Considerinf Internal Contact Treament on One Deforming Body (변형하는 동일물체간의 접촉처리를 고려한 대형강괴 자유단조의 2차원 열점소성 유한요소해석)

  • 박치용;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.102-108
    • /
    • 1995
  • Internal contact scheme between two free surfaces on one deforming body has been proposed by using the penalty method. It has been imposed to be internal boundary condition on two-dimensional thermo-viscoplastic finite element method so as to analyze one deforming body, which has two free surfaces penetrating each others. Analysis of side pressing with a circular void and a inclined elliptic hole have been carried out in order to verity the proposed contact scheme. A finite element code imposed internal boundary condition has been applied to two-dimensional analysis of free forging of large ingot with a void. Through the analysis, effects of working parameters in order to consolidate voids have been investigated.

  • PDF

A Characteristics of a Secondary flow in a Corner Section of Square Duct (정사각덕트의 코너부에서 이차유동 특성)

  • Joung, J.M.;Kim, J.H.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.753-758
    • /
    • 2000
  • Heat engine and fluid machinery in the plant have to linked with various ducts network and the corresponding design have to be concerned about effectiveness and stability of system of plant. To optimum control and design system concerning stability, economization, operating effectiveness we have to exact analysis flow properties of a duct applying to fluid machinery, heat exchanger, cooling machine, air conditioning equipment. therefore, it is necessary to research the duct, heat transfer equipment, for increasing overall effectiveness of air conditioning system by suggesting basic data of the duct resulting from organic research. So we can contribute to technical development of the duct. In case of speeding up the flow rate of the duct, lots of wave velocity components are occurred the value of boundary layer resulting from developing the boundary layer at both walls of duct.

  • PDF

A Study on the Reduction of Viscous Frictional Force with Uniform Pressure Distribution in the Turbulent Boundary Layer (균일(均一) 압력(壓力) 분포(分布)에 의(依)한 난류(亂流) 경계층내(境界層內) 결성(結性) 마찰력(摩擦力)의 감소화(減小化)에 관한 연구(硏究))

  • Sung, Du-Nam;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, uniform pressure distribution with small hole on the surface of symmetric object were given to reduce the viscous frictional force. The results were as follows : 1. The velocity on upper stream were accelerated by uniform pressure distribution on symmetric objects for reducing the viscous frictional resistances. 2. The effects of the distributed small holes were reduced the viscous frictional resistances in down stream region more than upper stream due to the increasing pressure in reverse flow region. 3. The viscous skin friction on surface of symmetric objects with and without distributed small holes are effect in region of upper stream and much decreased in down stream region due to increasing of boundary layer thickness.

  • PDF

A Study on the Analysis toy Perforated Plate with Irregular Section (불규칙 단면을 갖는 유공 탄성 평판의 해석에 관한 연구)

  • 이성용;장명호;김재열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.34-41
    • /
    • 1999
  • This paper is focused on numerical analysis for perforated plate with irregular section based on Kirchhoff's fundamental equations of a circular plate. The dimensions of analysis model are as following; 1) radius:100cm, 2) hole in center:20cm, 3)thickness: l0cm and variable and have a simple support in boundary. The theoretical results are compared with data obtained by the F.2.M analysis. Both data have good agreement with each other.

  • PDF

Characteristic of Friction on Texturing Bearing Steel with Ultrasonic Hole Machine

  • Shin, Mijung;H., Angga Senoaji;Kwon, SoonHong;Chung, SungWon;Kwon, SoonGoo;Park, JongMin;Kim, JongSoon;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We carry out experiments to characterize textured bearing steel with varying hole density and depth. Textured surface is believed to reduce the friction coefficient, and improve performance and wearing caused by third-body contact. We employ three lubrication regime conditions based on the Stribeck curve: boundary lubrication, mixed lubrication, and hydrodynamic lubrication. Ultrasonic machining is an untraditional machining method wherein abrasive grit particles are used. The hammering process on the work piece surface by abrasive provides the desired form. In this study, we create multi-holes on the bearing steel surface for texturing purposes. Holes are formed by an ultrasonic machine with a diameter of 0.534 mm and a depth of about 2-4 mm, and they are distributed on the contact surface with a density between 1.37-2.23%. The hole density over the surface area is an important factor affecting the friction. We test nine types of textured specimens using four times replication and compare them with the untextured specimen using graphs, as well as photographs taken using a scanning electron microscope. We use Analyzes variant in this experiment to find the correlation between each pair of treatments. Finally, we report the effect of hole density and depth on the friction coefficient.

Solution for a semi-infinite plate with radial crack and radial crack emanating from circular hole under bi-axial loading by body force method

  • Manjunath, B.S.;Ramakrishna, D.S.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.177-187
    • /
    • 2009
  • Machine or structural members subjected to fatigue loading will have a crack initiated during early part of their life. Therefore analysis of members with cracks and other discontinuities is very important. Finite element method has enjoyed widespread use in engineering, but it is not convenient for crack problems as the region very close to crack tip is to be discretized with very fine mesh. However, as the body force method (BFM), requires only the boundary of the discontinuity (crack or hole) to be discretized it is easy versatile technique to analyze such problems. In the present work fundamental solution for concentrated load x + iy acting in the semi-infinite plate at an arbitrary point $z_0=x_0+iy_0$ is considered. These fundamental solutions are in complex form ${\phi}(z)$ and ${\psi}(z)$ (England 1971). These potentials are known as Melan potentials (Ramakrishna 1994). A crack in the semi-infinite plate as shown in Fig. 1 is considered. This crack is divided into number of divisions. By applying pair of body forces on a division, the resultant forces on the remaining 'N'divisions are to be found for which ${\phi}_1(z)$ and ${\psi}_1(z)$ are derived. Body force method is applied to calculate stress intensity factor for crack in semi-infinite plate. Also for the case of crack emanating from circular hole in semi-infinite plate radial stress, hoop stress and shear stress are calculated around the hole and crack. Convergent results are obtained by body force method. These results are compared with FEM results.

Late Pleistocene Variation in Intensity of Deep Western Boundary Current from Vertical Change in Size of Terrigenous Silt in the Rekohu Sediment Drift, SW Pacific (남서태평양 리코후 드리프트 퇴적층의 쇄설성 실트입자 크기의 수직적 변화를 이용한 플라이스토세 후기 심해서안경계해류의 세기 변화)

  • Kim, B.K.;Lee, Y.J.;Park, Y.H.;Bahk, J.J.
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.451-457
    • /
    • 2006
  • Hole 1124 of ODP Leg 181 was located in the Rekohu sediment drift off eastern New Zealand in the southwest Pacific Ocean. Mean gain sizes of sortable silt were measured in two drilled cores (1124A and l124B). Chronostratigraphy of core 1124 was correlated with the well-dated nearby core S931, resulting that the age of core 1124 covers the late Pleistocene spanning about MIS (Marine Isotope Stage) 5. Mean grain size of sortable silt seemed to be relatively large during the glacial period, whereas that of the interglacial period was smaller, although several tephra layers contain some coarse-grained pyroclatic particles. The variation in mean grain size of sortable silt in Rekohu sediment drift during the late Pleistocene indicates that the intensity of Deep Western Boundary Current (DWBC) might have been enhanced during the glacial period as a result of increased production of Antarctic Bottom Water (AABW).

Level Set Based Shape Optimization of Linear Structures Using Topological Derivatives (Topological Derivative를 이용한 선형 구조물의 레벨셋 기반 형상 최적 설계)

  • Ha Seung-Hyun;Kim Min-Geun;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.299-306
    • /
    • 2006
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The 'Hamilton-Jacobi (H-J)' equation and computationally robust numerical technique of 'up-wind scheme' lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H -J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes is not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

  • PDF