• 제목/요약/키워드: Hmm

검색결과 966건 처리시간 0.028초

평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델 (Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권10호
    • /
    • pp.277-282
    • /
    • 2012
  • 음성 인식 시스템은 다양하게 변화하는 환경 잡음에 빠르게 적응할 수 없어서 인식 성능을 저하시키는 요인이 된다. 본 논문에서는 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인하게 하는 방법으로 HMM 학습 모델을 구성하는 방법을 제안하였으며, 변화하는 반향 잡음에 적응하도록 HMM 학습 모델을 구성하여 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 3.1dB이 향상되었고 인식률은 3.9% 향상되었다.

하이브리드법에 의한 HMM-Net 분류기의 학습 (On Learning of HMM-Net Classifiers Using Hybrid Methods)

  • 김상운;신성효
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1273-1276
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood (ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM-Net classifiers using hybrid criteria, ML/MMSE and MMI/MMSE, and report the results of an experimental study comparing the performance of HMM-Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

5-HMM물 이용한 텍스트 정보추출 (Information extraction wish S-HMM from textual data)

  • 엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 패턴이나 음성데이터와 같이 순차적 데이터론 인식하는데 널리 사용되어온 모델로서, 일련의 순차적인 성질을 내포하고있는 데이터를 다루는 문제에 적합하다고 할 수 있는 HMM을 이용하여 정보추출 문제를 다룬다. 기본적으로는 통상적인 HMM 사용법을 따르나 모델의 구조를 정함에 있어서 HMM을 사용할 때는 주로 목적에 맞는 HMM의 구조를 수동으로 구성하고 모델 내부의 확률 파라미터 값을 학습시켰던 데 반해, 본 논문에서는 데이터의 전처리 정보를 이용하여 초기에 추상적으로 설정한 모델이 학습을 통해서 점차 구체화되어 가는 자기 구성 은닉마르코프 모델(5-HMM)을 제시하여 사용한다. 제시된 방법은 CFP(Call for Paper)등의 텍스트 데이터에 더만 실험에서 기존 방식을 사용한 HMM보다 향상된 결과를 보여준다.

  • PDF

불완전 시계열 데이터를 위한 이산 HMM 학습 알고리듬 (Discrete HMM Training Algorithm for Incomplete Time Series Data)

  • 신봉기
    • 한국멀티미디어학회논문지
    • /
    • 제19권1호
    • /
    • pp.22-29
    • /
    • 2016
  • Hidden Markov Model is one of the most successful and popular tools for modeling real world sequential data. Real world signals come in a variety of shapes and variabilities, among which temporal and spectral ones are the prime targets that the HMM aims at. A new problem that is gaining increasing attention is characterizing missing observations in incomplete data sequences. They are incomplete in that there are holes or omitted measurements. The standard HMM algorithms have been developed for complete data with a measurements at each regular point in time. This paper presents a modified algorithm for a discrete HMM that allows substantial amount of omissions in the input sequence. Basically it is a variant of Baum-Welch which explicitly considers the case of isolated or a number of omissions in succession. The algorithm has been tested on online handwriting samples expressed in direction codes. An extensive set of experiments show that the HMM so modeled are highly flexible showing a consistent and robust performance regardless of the amount of omissions.

잡음하의 음성인식을 위한 스펙트럴 보상과 주파수 가중 HMM (A Frequency Weighted HMM with Spectral Compensation for Noisy Speech Recognition)

  • 이광석
    • 한국정보통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.443-449
    • /
    • 2001
  • 잡음환경에서의 음성인식은 실제의 환경에서의 음성인식에서 매우 중요한 애로기술로써 이를 해결하기 위한 연구는 꾸준히 연구되고 있다. 따라서 본 연구는 음성인식분야에서 가장 많이 사용하고 있는 HMM처리 시잡음처리의 문제점을 주파수 가중치 부가 HMM으로 해결하는 방법을 제안하고 그 성능을 인식실험을 통하여 검토하였다. 그 결과 SS처리를 함께 사용하는 $MCE-\mu$, MCE-$\rho$가 가장 잡음에 강한 방식임을 알 수 있었다.

  • PDF

HMM-Net 분류기의 효율적인 학습법 (An efficient learning method of HMM-Net classifiers)

  • 김상운;김탁령
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.933-935
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood(ML) and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM_Net classifiers using a ML-MMSE hybrid criterion and report the results of an experimental study comparing the performance of HMM_Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the repects of learning and recognition rates.

  • PDF

반연속 HMM과 RBF 혼합 시스템을 이용한 화자독립 음성인식에 관한 연구 (A Study on Speaker-Independent Speech Recognition Using a Hybrid System of Semi-Continuous HMM and RBF)

  • 문연주;전선도;강철호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.36-39
    • /
    • 1999
  • 본 논문에서는 기존의 반연속 HMM과 신경망 알고리즘인 RBF(Radial Basis Function)를 혼합한 형태를 음성인식에 적용한다. 기존의 반연속 HMM은 학습 과정에서 모든 모델과 상태에서 공유되는 L개의 가우시안 확률 밀도들과 각가우시안 확률 밀도들의 가중치를 결정하는 흔합 밀도계수 의해 입력 음성의 특징을 확률적으로 모델링하는 혼합 확률을 얻고 또 Maximum likelihood와 Baum-Welch 알고리즘을 이용해 초기확률, 전이확률, 관측확률, 평균벡터 $\mu$, 공분산 행렬 $\Sigma$을 학습해 나간다. 그러나 제안한 RBF/반연속 HMM 혼합형태는 RBF의 변형된 방식을 첨가해 반연속 HMM 관측 파라미터를 RBF에 의해 결정함으로써 보단 분별릭 있는 화자독립 인식 시스템이 된다. 그래서 인식 실험결과 인식률에 있어서 기존의 반연속 HMM보다 향상된 인식률을 얻는다.

  • PDF

Discriminant 학습을 이용한 전화 숫자음 인식 (Telephone Digit Speech Recognition using Discriminant Learning)

  • 한문성;최완수;권현직
    • 대한전자공학회논문지TE
    • /
    • 제37권3호
    • /
    • pp.16-20
    • /
    • 2000
  • 대부분의 음성인식 시스템이 확률 모델을 기반으로 한 HMM 방법을 가장 많이 사용하고 있다. 한국어 고립 전화 숫자음 인식인 경우에 만약 충분한 학습 데이터가 주어지면 HMM 방법을 사용해도 높은 인식률을 얻는다 그러나 한국어 연속 전화 숫자음 인식인 경우에 비슷하게 발음되는 전화 숫자음들에 대해서는 HMM방법이 한계를 가지고 있다. 본 논문에서는 한국어 연속 전화 숫자음 인식에서 HMM 방법의 한계를 극복하기 위해 discriminant 학습 방법을 제시한다. 실험결과는 우리가 제시한 discriminant 학습 방법이 비슷하게 발음되는 전화 숫자음들에 대해서 높은 인식률을 갖는 것을 보여준다.

  • PDF

MDPPA/HMM처리 면직물의 고착방법에 따른 방염성과 물성의 변화 (Effect of Fixation Methods on the Flame Retardant and Performance Properties of MDPPA/HMM treated Cotton)

  • 지주원;오경화
    • 한국의류학회지
    • /
    • 제24권1호
    • /
    • pp.15-23
    • /
    • 2000
  • Effect of fixation methods on the flame retardant(FR) and performance properties of MDPPA/HMM treated cotton fabrics were studied. Combination of three different fixation methods - premercerization, swelling agent treatment, pad dry cure fixation, and wet fixation - were applied to flame retardant finish of cotton with MDPPA/HMM. As a result, an increase in internal volume of cotton fiber by pre-mercerization and addition of swelling agent, and wet fixation increased %add-on of FR agent improving FR efficiency and wash fastness. Tensile strength of MDPPA/HMM treated cotton fabrics by wet fixation and swelling agent were slightly decreased, but that of premercerized cotton was improved. Wet fixated fabric showed lower bending rigidity and better compressional properties which improved fabric hand. Retention of swelling ability of cotton treated with MDPPA/HMM improved moisture absorption properties.

  • PDF

은닉 마르코프 모형을 이용한 회전체 결함신호의 패턴 인식 (Pattern Recognition of Rotor Fault Signal Using Bidden Markov Model)

  • 이종민;김승종;황요하;송창섭
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1864-1872
    • /
    • 2003
  • Hidden Markov Model(HMM) has been widely used in speech recognition, however, its use in machine condition monitoring has been very limited despite its good potential. In this paper, HMM is used to recognize rotor fault pattern. First, we set up rotor kit under unbalance and oil whirl conditions. Time signals of two failure conditions were sampled and translated to auto power spectrums. Using filter bank, feature vectors were calculated from these auto power spectrums. Next, continuous HMM and discrete HMM were trained with scaled forward/backward variables and diagonal covariance matrix. Finally, each HMM was applied to all sampled data to prove fault recognition ability. It was found that HMM has good recognition ability despite of small number of training data set in rotor fault pattern recognition.