• Title/Summary/Keyword: Histone H3 gene

Search Result 86, Processing Time 0.029 seconds

Effects of pregnancy serum and scriptaid on development in early partheno embryo

  • Oh, Min-Gee;Jung, Na-Hyeon;Kim, Dae-Seung;Yoon, Jong-Taek
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Partheno Embryo's research is known to play a very important role in identifying the development of embryonic cells or analyzing the genetic mechanisms of embryonic development, but the information on apoptosis formed during the early stage of development on Partheno Embryo is very little. Therefore, this study analyzed whether the embryonic cell death of unit embryos can be inhibited by adding Scriptaid, one of HDACi, which plays a role in demethylation of histone proteins as a method of regulating the cell cycle in the early embryo development of Partheno Embryo. As a result, the differentiation rate was higher in the group that added Scriptaid and FBS, but the cellular development was higher in the group that added pregnant serum to Scriptaid. As a result of analyzing the expression of the gene through IF and PCR, the group with the addition of gestational serum increased the expression of BCL2 and PCNA, which affects the anti-Casp3 action in cell survival. In addition, it is interpreted that treatment of Scriptaid for 16 hours, rather than 24 h treatment lowers the expression of Casp-3, a representative factor of apoptosis, and also increases embryonic development, thus affecting early embryo development. Therefore, it is concluded that the 16-hour treatment of Scriptaid and the use of gestational serum will inhibit cell death in the early embryonic development and increase the development rate of the embryo.

Effect of Temperature on Growth and Related Gene Expression in Alternative Type Wheat Cultivars (양절형 밀 생장에 대한 온도의 영향과 유전자 발현 양상)

  • Heo, Ji Hye;Seong, Hye Ju;Yang, Woon Ho;Jung, Woosuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.384-394
    • /
    • 2019
  • We have investigated the effects of ambient temperature on the growth of wheat in Korea. The differences in the growth phase of wheat were compared according to the temperature treatment. The productive tiller number and dry weight were decreased in a plot under a higher temperature treatment. We found that the growth of Jinpum was different from that of the alternative wheat cultivars, which were bred in Korea, at 50 days after treatment. While the Jinpum wheat grown at 17℃ showed vegetative stage growth, that grown in the 23℃ growth chamber entered the heading and flowering stage. The differences in the expression of 16 genes known to be involved in high-temperature responses were checked by using Jinpum wheat 50 days after two temperature treatments (17℃ and 23℃), which showed apparent differences in expression between the higher and lower temperatures during the growth phase. In the 23℃ treatment samples, the genes with increased expression were HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, and Histone H2A, while the genes with decreased expression were VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL, and MYB73. YUCCA2, HSP101, ERF1, and VRN-A1 showed a significant difference in gene expression between lower- and higher-temperature conditions. Overall, combining the means of the expression of various genes involved in thermosensing, vernalization, and abiotic stresses, it is possible to conclude that different sets of genes are involved in vernalization and summer depression of wheat under long term, high ambient temperature conditions.

Molecular Biological Study of Anti-cancer Effects of Bee Venom on Human Melanoma Cell (약침용봉독액(藥鍼用蜂毒液)이 흑색종세포(黑色腫細胞)에 미치는 항암효과(抗癌效果)에 대(對)한 분자생물학적(分子生物學的) 연구(硏究))

  • Park, Chan-Yol;Nam, Sang-Soo;Kim, Chang-Hwan;Lee, Jae-Dong;Kang, Sung-Keel;Lee, Yun-Ho;Ahn, Byoung-Choul
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.169-186
    • /
    • 2000
  • To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability, apoptosis, and cell cycle were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, activity of caspase-3 protease activity assay, and immunocytometric analysis of PCNA. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis- and cell cycle-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [$^3H$]thymidine release assay, and flow cytometric analysis of sub $G_1$ fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and $Bcl-X_L$ were down-regulated whereas Bax was up-regulated by bee venom treatment. 5. In flow cytometric analysis of cell cycle and immunocytometric analysis of PCNA expression, cell numbers of $G_1$ phase was increased by a dose-dependant manner. 6. In quantitative RT-PCR analysis of the cell cycle-related genes, p21, p27, and p57 were increased, while Cyclin D1, CDK4, c-Myc, c-Fos, and Histone H3 were decreased. In contrast, there were no remarkable changes in expression levels of CDC2 and c-Jun.

  • PDF

Pathgenicity on Ginseng and Sequence Assays of Ilyonectria radicicola Isolated from Chestnut Rhizosphere Soils (밤나무 근권토양에서 분리한 Ilyonectria radicicola 균주의 인삼에 대한 병원성 및 유전적 분석)

  • Seo, Mun Won;Song, Jeong Young;Kim, Sun Ick;Oh, Sang Keun;Kim, Hong Gi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.302-307
    • /
    • 2018
  • Background: A soil-borne pathogenic fungus, Ilyonectria radicicola (Cylindrocarpon destructans) causes root rot on ginseng (Panax ginseng C. A. Meyer) and is known to attack many other plants. The Nectria/Neonectria radicicola complex has been renamed as the I. radicicola complex after analysis of its multi-gene relatedness and morphological characteristics. The fungi in this complex have been reclassified into 16 species under the genus Ilyonectria based on characteristics analysis Methods and Results: To obtain useful data from the Korean ginseng root rot, I. radicicola was isolated from the rhizosphere soils of the chestnut tree. They were identified through a pathogenicity test and a survey of the morphological features. The existence of I. radicicola in soil samples was confirmed by PCR detections using nested PCR with species-specific primer sets. These were subsequenctly isolated on semi-selective media from PCR-positive soils. Genetic analysis of the I. radicicola complex containing these pathogens was done by comparing the DNA sequences of the histone h3 region. These isolates originating from the rhizosphere soils of chestnut constituted a clade with other closely related species or I. radicicola isolates originating from ginseng or other host plants, respectively. Additionally, the pathogenicity tests to analyze the characteristics of these I. radicicola isolates revealed that they caused weakly virulent root rot on ginseng. Conclusions: This is the first study reporting that I. radicicola isolates from chestnut rhizosphere soils can attack ginseng plant in Korea. Thus, these results are expected to provide informations in the selection of suitable fields for ginseng cultivation.

EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer

  • Ma, Jin;Zhang, Jun;Weng, Yuan-Chi;Wang, Jian-Cheng
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.868-880
    • /
    • 2018
  • Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells. Dual-luciferase report gene assay and chromatin immunoprecipitation assay were employed to identify the relationship between miR-139-5p and EZH2. RT-qPCR and Western blot analysis were conducted to determine the expression of miR-139-5p, EZH2 and EMT-related markers and ZEB1/2. Tumor formation ability and in vitro cell activity were also analyzed. Highly-expressed EZH2 and poorly-expressed miR-139-5p were detected in PC tissues, and miR-139-5p and EZH2 expressions were associated with patients at Stage III/IV, with LNM and highly-differentiated tumors. EZH2 suppressed the expression of miR-139-5p through up-regulating Histone 3 Lysine 27 Trimethylation (H3K27me3). EMT, cell proliferation, migration and invasion were impeded, and tumor formation and LNM were reduced in PC cells transfected with miR-139-5p mimics and shEZH2. MiR-139-5p transcription is inhibited by EZH2 through up-regulating H3K27me3, thereby down-regulation of EZH2 and up-regulation of miR-139-5p impede EMT and LNM in PC. In addition, the EZH2/miR-139-5p axis presents as a promising therapeutic strategy for the treatment of PC.

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.