• Title/Summary/Keyword: Histomorphometric evaluation

Search Result 58, Processing Time 0.022 seconds

The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

  • Park, Shin-Young;Kim, Kyoung-Hwa;Koo, Ki-Tae;Lee, Kang-Woon;Lee, Yong-Moo;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Purpose: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. Methods: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. Results: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted $r^2=0.907$, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). Conclusions: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.

THE INFLUENCE OF THE INITIAL STABILITY AFTER DENTAL IMPLANT INSTALLATION ON THE OSSEOINTEGRATION (임프란트 식립시 초기 안정성이 골유착에 미치는 영향)

  • Lee, Young-Hoon;Kim, Yeo-Gab;Choi, Byung-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.518-528
    • /
    • 2008
  • Purpose: The long-term experience of using osseointegrated implants for prosthetic rehabilitation of the edentulous patients shows that high success rates can be predictably achieved. Primary implant stability has been identified to be a prerequisite to achieve osseointegration. In this study, we set up the amount of removed bone so that it differed on implant installation site for each group. The influence of each initial stability on secondary stability and osseointegration was compared with time lapse using resonance frequency analysis and histomorphometric analysis. Materials and methods: A total 27 US $II^{(R)}$ (Osstem, Korea) implants were placed in the mandibular edentulous area of 3 beagle dogs. The implant site was prepared by the conventional technique with drills, and three experimental groups were divided into under-drilling group, normal-drilling group and over-drilling group. The Implant Stability Quotient (ISQ) was measured at intervals of immediately, 4, 8, 12 weeks after placement using $Osstell^{(R)}$ mentor RFA. After the animals were sacrificed, histomorphometric evaluation was executed for measuring BIC and BD. Results: 1) The under-drilled group showed most high ISQ value for whole experiment period. 2) Bone-to-implant-contact(BIC) showed the tendency to be increased gradually as the experiment period passed except the 8 weeks of the normal group. 3) The under-drilled group showed most high bone density(BD) level for whole experiment period, and it was expressed the aspect to be increased gradually according to an experiment period passage in the average of all group. 4) Resonance frequency analysis and histomorphometric analysis are presumed by generally proportional. Conclusions: As this research result, it seems that there are some correlation between resonance frequency analysis and histomorphometric analysis. As are accomplished osseointegration stably so that more superior at the region which the overpressure comes to add, it will be applicable method in clinical field.

THE EFFECT OF PRP AND FIBRIN SEALANT WITH THE DEPROTENIZED BOVINE BONE IN THE RABBIT CRANIUM (가토의 두개골 골결손부에 탈단백 우골 이식시 혈소판 농축 혈장과 피브린 실란트의 효과)

  • Lee, Yong-In;Shin, Seung-Yun;Lee, Dong-Hwan;Hong, Jong-Rak
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • Purpose The purpose of this study is to evaluation of effect on bone formation of PRP and fibrin sealant with deproteinized bovine bone(Bio-Oss) grafts on rabbit cranial defect. Material and Methods Twelve rabbits were used as experimental animal Two equal 9mm diameter cranial bone defects were created in each rabbit and immediately grafted with Bio-Oss only, Bio-Oss and PRP, and Bio-Oss and Fibrin sealant. Rabbits were sacrificed at 4 and 8 week. The defects were evaluated by histomorphometric analysis. Results Kruskal-Wallis tests were performed comparing new bone formation via histomorphometric analysis. No statistically significant difference of new bone formation was found between Bio-Oss only, Bio-Oss and PRP, and Bio-Oss and fibrin sealant at 4 and 8 weeks (P>0.05). Conclusion This study fails to find a stimulatory effect of PRP and Fibrin sealant on New bone formation of Bio-Oss grafts by histomorphometric analyses.

Removal Torque and Histomorphometric Investigation of Surface Modified Commercial Implants: An Experimental Study in the Rabbit Tibia (상용화된 치과용 임플란트의 뒤틀림 제거력 및 조직학적 분석 연구: 가토 경골에서의 연구)

  • Park, Jong-Hyun;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • The methods of surface modification of commercial implants were various according to the manufacturer. Surface modification of implant may produce diverse physical and chemical surface characteristics resulted from the treatment method and treatment condition. As a result, the bone response might be different. Even though surface modified implants have been used clinically, most researches are focusing on the bone response of surface modified implants comparing to machined implants rather than surface modified commercial implants. This study compare and analyze bone responses of 4 surface modified commercial implants with different shapes and surfaces. Eighty surface modified commercial implants with 4 different surface characteristics were installed in the tibia of white Newzealand rabbits. Biomechanical stability tests and histomorphometric evaluation were done. The results were as follows: 1. Surface modified commercial implants showed stable osseointegration at 6 weeks after installation. 2. Histomorphometric evaluation showed that there was no significant differences in bone to implant contact among 4 different commercial titanium implants. In comparing the implants with different shape the measurement of bone growth in subcortical area would be more reliable than entire bone to implant contact length. 3. Resonance Frequency Analysis showed that there was no significant differences among 4 types of implants, even though they were significantly different in installation. 4. There was significant differences in interfacial shear strength among 4 type of implants. 5. It is difficult to observe accurate bone to implant interface using Micro-CT. However, it is possible to measure the entire contact length of the implant to the bone.

TME EFFECT OF MAGNETISM(NEODYMIUM MAGNET) ON BONE FORMATION AROUND TITANIUM IMPLANTS INSERTED INTO THE TIBIA OF RABBIT (Rabbit의 tibia에 매식된 titanium시편 내부에 설치한 희토류 자석의 자성이 주위의 골형성에 미치는 영향에 관한 연구)

  • Park Myung-Won;Lee Sung-Bok;Kwon Kung-Rock;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.519-527
    • /
    • 2005
  • Statement of problem : There are many articles that showed that the magnetism affected the bone formation around titanium implant. It means that a proper magnetism made the osseointegration improved around the implant. So after additional research on the other effect of magnetism on bone formation in implant therapy, we can conclude its possibility of clinical application on implant treatment. Purpose: The purposes of this study were to find out the intensity of magnetic field where magnetism in the titanium implant specimen inserted into the bone could affect the bone formation, and to discover the possibility of clinical application in the areas of dental implants and bone grafts. Material and method: Ten adult male rabbits(mean BW 2Kg) were used in this study. Titanium implant specimens were surgically implanted on the mesial side of the tibia of rabbits. Neodymium magnets(Magnedisc 500, Aichi Steel Corp. Japan) were placed into the implants of experimental group except control group, just after placement of the titanium implants. At 2, 4 and 8 weeks after the surgery, the animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation and histomorphometric analysis. Conclusion : The results were as follows: 1. In radiographic findings, increased radiopacity downward from crestal bone was observed along the titanium implant specimen at experimental period passed by 2, 4, and 8 weeks in both control and experimental group. 2. In histoiogic findings, increased new bone formation was shown in both control and experimental group through the experiment performed for 2, 4, and 8 weeks. More new bone formation and bone remodeling were shown in experimental group. 3. In histomorphometric analysis, the bone contact ratios were 11.9% for control group and 38.5% for experimental group (p<0.05).

Comparison of the removal torque and a histomorphometric evaluation of the RBM treated implants with the RBM followed by laser treated implants: an experimental study in rabbits

  • Park, Eun Young;Sohn, Hae Ok;Kim, Eun-Kyong
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 2019
  • Background: In the osseointegration of dental implants, the implant surface properties have been reported to be some of the most important critical factors. The effect of implant's surfaces created by resorbable blast media (RBM) followed by laser ablation on bone tissue reactions was examined using the removal torque test and histomorphometric analysis. Methods: Two types of dental implants, RBM-laser implants (experimental group) and RBM implants (control group) (CSM implant system, Daegu, Korea; L=6 mm, diameter=3.75 mm) were placed into the right and left distal femoral metaphysis of 17 adult rabbits. Six weeks after placement, removal torque was measured and histomorphometric analysis was performed. Results: The mean removal torque was $24.0{\pm}10.2Ncm$ and $46.6{\pm}16.4Ncm$ for the control and test specimens, respectively. The experimental RBM-laser implants had significantly higher removal torque values than the control RBM implants (p=0.013). The mean values of total and cortical bone to implant contact (BIC) were respectively $46.3{\pm}10.8%$ and $65.3{\pm}12.5%$ for the experimental group, and $41.9{\pm}18.5%$ and $57.6{\pm}10.6%$ for the control group. The experimental RBM-laser implants showed a higher degree of total and cortical BIC compared with RBM implants, but there was no statistical significance (p=0.482, 0.225). Conclusion: The removal torque and BIC of the test group were higher than those of the control group. In this study, the surface treatment created by RBM treatment followed by laser ablation appears to have a potential in improving bone tissue reactions of dental implants.

Evaluation of regeneration after the application of 2 types of deproteinized bovine bone mineral to alveolar bone defects in adult dogs

  • Lee, Dajung;Lee, Yoonsub;Kim, Sungtae;Lee, Jung-Tae;Ahn, Jin-soo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.5
    • /
    • pp.370-382
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the preclinical results of 2 types of commercially available deproteinized bovine bone mineral (DBBM) when applied to alveolar bone defects in dogs. Methods: This study was conducted using 6 beagles. Alveolar defects in the mandible were formed and filled with 2 DBBMs produced by a similar procedure. Defects were randomly assigned to be filled using DBBM 1 or 2. All defects were covered with a collagen membrane and had a healing period of 12 weeks. After the dogs were sacrificed, histological, histomorphometric, and linear/volumetric analyses were performed. Results: Both DBBM groups showed similar histological findings, demonstrating that bone remodeling had occurred and new bone had formed. The residual bone particles were surrounded by newly formed vital bone. In the histomorphometric analysis, the ratio of the area of vital bone and residual bone substitute in DBBM 2 (38.18% and 3.47%, respectively) was higher than that of DBBM 1 (33.74% and 3.41%, respectively), although the difference was not statistically significant. There were also no statistically significant differences between both groups in linear and volumetric analyses using micro-computed tomography scans and digitized images of dental casts. Conclusions: In the present study, DBBM 1and 2, which were produced by similar processes, showed similar results in histological, histomorphometric, and volumetric analyses. Further studies are needed to identify more specific differences between the 2 DBBMs.

Study of bone healing pattern in extraction socket after application of demineralized dentin matrix material (자가치아 뼈 이식재의 발치와내 이식 후 골 치유 양상에 관한 연구)

  • Chung, Jae-Ho;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • Introduction: Research on dental bone graft material has been actively conducted. Recently, demineralized dentin matrix material has been developed and introduced. This study examined the effect of demineralized dentin matrix material on bone healing. Subjects and Methods: The patients who received no treatment after extraction were used as the control group and patients who underwent demineralized dentin matrix material application in the extraction socket after extraction were used as the experimental group. Panorama radiography was performed at the baseline and at 3.5 months after graft material placement and CT was taken at 3.5 months after graft material placement for a radiologic evaluation. Bony tissue specimens were collected from the alveolar crest in the middle of the extraction socket using a 2 mm trephine bur after 3.5 months for the histology and hostomorphometric study. Results: 1. On the panoramic view, a higher bone density was observed in the subject group. 2. On the panoramic view, the bone density increased significantly in the extraction socket, from the baseline to 3.5 months: a 7 and 10 gray-level scale was observed in the control and experimental group, respectively (P<0.05). 3. The CT view evaluation at 3.5 months revealed significantly higher bone density in the subject group than the control group (P<0.05). 4. The histological findings showed more active new bone and lamellar bone formation in the subject group. Dentin with osteoinduction ability and enamel with osteoconduction ability appeared. 5. On histomorphometric analysis, the subject group showed significantly more new bone, lamellar bone area and lower soft tissue area (P<0.05). The difference between the groups was significant (P<0.05). Conclusion: Bone healing was improved after the application of demineralized dentin matrix material and there was active new bone and lamellar bone formation.

Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects (삼차원적으로 연결된 미세다공성 구조를 가진 이상인산칼슘 골이식재의 골치유에 관한 조직계측학적 평가)

  • Lee, Jong-Sik;Choi, Seok-Kyu;Ryoo, Gyeong-Ho;Park, Kwang-Bum;Jang, Je-Hee;Lee, Jae-Mok;Suh, Jo-Young;Park, Jin-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Purpose: The purpose of this study was to histomorphometrically evaluate the osteoconductivity of a new biphasic calcium phosphate ceramics with fully interconnected microporous structure. Material and Methods: Osseous defects created in the rabbit calvaria were filled with four different bone graft substitutes. Experimental sites were filled with a new fully interconnected microporous biphasic calcium phosphate with(BCP-2) or without(BCP-1) internal macropore of $4400\;{\mu}m$ in diameter. MBCP(Biomatlante, France) and Bio-Oss(Geistlich Pharma, Switzerland) were used as controls in this study. Histomorphometric evaluation was performed at 4 and 8 weeks after surgery. Result: In histologic evaluation, new bone formation and direct bony contact with the graft particles were observed in all four groups. At 4 weeks, BCP-1(15.5%) and BCP-2(15.5%) groups showed greater amount of newly formed mineralized bone area(NB%) compared to BO(11.4%) and MBCP(10.3%) groups. The amounts of NB% at 8 weeks were greater than those of 4 weeks in all four groups, but there was no statistically significant differences in NB% between the groups. Conclusion: These results indicate that new bone substitutes, BCP with interconnected microporous structure and with or without internal macroporous structures, have the osteoconductivity comparable to those of commercially available bone substitutes, MBCP and Bio-Oss.

A clinico-radiographic and histomorphometric analysis of alveolar ridge preservation using calcium phosphosilicate, PRF, and collagen plug

  • Tarun Kumar, AB;Chaitra, N.T.;Gayatri Divya, PS;Triveni, M.G.;Mehta, Dhoom Singh
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.32.1-32.7
    • /
    • 2019
  • Background: Tooth extraction commonly leads to loss of residual alveolar ridge, thus compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. Clinico-radiographic measurements of hard and soft tissues were taken at baseline and 6 months post-grafting. Results: There were no significant changes in the radiographic and soft tissue parameters while significant changes in hard tissue parameters with 1.9 mm (p = 0.013) gain in mid-buccal aspect and 1.1 mm (p = 0.019) loss in horizontal bone width were observed. The histomorphometric evaluation depicted the vital bone volume of 54.5 ± 16.76%, non-mineralized tissue 43.50 ± 15.80%, and residual material 2.00 ± 3.37%. Conclusion: The implants placed in these preserved ridges presented 100% success rate with acceptable stability after a 1-year follow-up, concluding calcium phosphosilicate is a predictable biomaterial in alveolar ridge preservation.