The purpose of this study is to build and manage environment models with line segments from sonar range data on obstacles in unknown and varied environments. The proposed method therefore employs a two-stage data-transform process in order to extract environmental line segments from range data on obstacles. In the first stage, the occupancy grid extracted from the range data is accumulated to form a two-dimensional local histogram grid. In the second stage, a line histogram extracted from a local histogram grid is based on a Hough transform, and matching serves as a means of comparing each of the segments on a global line segments map against the line segments to detect the degree of similarity in the overlap, orientation, and arrangement. Each of these tests is formulated by comparing one of the parameters in the segment representation. After the tests, new line segments can be found at maximum-density cells in the line histogram, and they are composed onto the global line segment map. The proposed technique is demonstrated in experiments in an indoor environment.
대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 χ2 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이 값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다 또한 실제 TV방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.
This paper presents a high performance disparity extraction algorithm that generate a dense and accurate disparity map using low-resolution disparity histogram. Disparity distribution of background and object areas can besegmented from low-resolution disparity histogram. These information can be used to reduce the search area and search range of the high-resolution image resulting reliable disparity information in high speed. The computationally efficient matching pixel count(MPC) similarity measure technique is useed extensively toremove the redundancies inherent in the area-based matching method, and also results robust matching at the boundary region. Resulting maches are further improved using iterative support algorithm and post processing. We have obtained good results on randomdot stereogram and real images obtained in our carmera system.
This paper proposes an automatic liver segmentation method using improved partial histogram threshold (PHT) algorithms. This method removes neighboring abdominal organs regardless of random pixel variation of contrast enhanced CT images. Adaptive multi-modal threshold is first performed to extract a region of interest (ROI). A left PHT (LPHT) algorithm is processed to remove the pancreas, spleen, and left kidney. Then a right PHT (RPHT) algorithm is performed for eliminating the right kidney from the ROI. Finally, binary morphological filtering is processed for removing of unnecessary objects and smoothing of the ROI boundary. Ten CT slices of six patients (60 slices) were selected to evaluate the proposed method. As evaluation measures, an average normalized area and area error rate were used. From the experimental results, the proposed automatic liver segmentation method has strong similarity performance as the MSM by medical Doctor.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권12호
/
pp.5998-6016
/
2017
In thin-film transistor liquid-crystal displays (TFT-LCDs), which are most commonly used in mobile devices, the backlight accounts for about 70% of the power consumption. Therefore, most low-power-related studies focus on realizing power savings through backlight dimming. Image compensation is performed to mitigate the visual distortion caused by the backlight dimming. Therefore, popular techniques include pixel compensation for brightness recovery and contrast enhancement, such as histogram equalization. However, existing pixel compensation techniques often have limitations with respect to blur owing to the pixel saturation phenomenon, or because contrast enhancement cannot adequately satisfy the human visual system (HVS). To overcome these, in this study, we propose a novel dimming technique to achieve both power saving and HVS-awareness by combining the pixel compensation and histogram specifications, which convert the original cumulative density function (CDF) by designing and using the desired CDF of an image. Because the process of obtaining the desired CDF is customized to consider image characteristics, histogram specification is found to achieve better HVS-awareness than histogram equalization. For the experiments, we employ the LIVE image database, and we use the structural similarity (SSIM) index to measure the degree of visual satisfaction. The experimental results show that the proposed technique achieves up to 15.9% increase in the SSIM index compared with existing dimming techniques that use pixel compensation and histogram equalization in the case of the same low-power ratio. Further, the results indicate that it achieves improved HVS-awareness and increased power saving concurrently compared with previous techniques.
이 논문에서는 팬-틸트-줌 기능을 가지는 실시간 능동카메라 시스템에 적합한 2단계 머리 추적 알고리즘을 제안한다. 먼저, 색 수렴 단계에서는 머리의 모양을 타원으로 가정하고 모델 색-히스토그램을 얻는다. 그 후, 모델과 후보 타원의 색-히스토그램간의 유사도를 검사하여 목표 물체의 대략적인 위치를 구하기 위해 mean-shift 방법을 이용한다. 여기에서 영상 내 물체 영역의 색 분포가 카메라의 관찰 방향에 따라 달라지는 것을 고려하기 위하여, 모델 히스토그램 뿐 아니라 이전 프레임에서 얻어진 타원의 색 히스토그램도 함께 고려함으로써 mean-shift의 수렴성을 향상시킨다. 특히, 이전 프레임에서 결정된 타원 내부의 가장자리 영역에 포함되어 있는 배경 색 성분에 의한 오류 누적 문제를 해소하기 위해, 모델 히스토그램을 이용하여 타원의 크기를 적응적으로 축소함으로써 이전 추적 결과중 머리 영역에 해당되는 색 히스토그램을 얻는다. 또한 영상 내의 전역 움직임을 예측하고 이를 보상하여 정확한 초기 위치를 찾음으로써 mean-shift의 색 수렴성을 더욱 향상시킨다. 이 때, 고속 움직임 추정을 위해 1-D 투사 데이터 기반의 방법을 제안한다. 다음 단계에서는, 모양 정보를 이용하여 수렴단계에서 얻어진 타원의 위치와 크기를 보다 정확히 재조정한다. 이를 위해 영상 내 경사도의 방향에 기반한 강건한 모양 유사도 함수를 정의하고 사용한다. 다양한 환경을 고려한 실험을 통하여, 사람의 움직임이 빠른 경우, 영상 내 머리 크기의 변화가 심한 경우, 그리고 배경의 색과 모양이 매우 복잡한 경우에 대해서도 제안한 알고리즘이 비교적 정확히 추적을 수행함을 보였다. 아울러 제안한 알고리즘은 추적을 수행하는데 일반 PC에서 약 30fps의 처리 속도를 보여 실시간 시스템에 적합하다.
본 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\chi2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.
대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 ${\chi}^2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.
본 논문에서는 기밀 데이터를 커버 이미지에 은닉하는 효과적인 가역 데이터 은닉 기법을 제안하였다. 제안된 기법에서는 이미지에 존재하는 지역적 유사성을 이용하여 픽셀 값을 정확하게 예측하여 예측 이미지를 생성하였고, 생성된 예측 이미지와 원본 커버 이미지를 사용하여 차분 시퀀스를 생성한 후, 히스토그램 쉬프트 기법을 적용하여 기밀데이터가 은닉된 스테고 이미지(stego-image)를 생성하였다. 스테고 이미지로부터 기밀 데이터를 추출하고 원본 커버 이미지를 손실 없이 복원할 수 있다. 제안된 기법을 적용하면 기존의 APD 기법에 비하여 더 많은 기밀 데이터를 은닉할 수 있음을 실험으로 확인하였다.
영상의 칼라, 텍스쳐, 오브젝트의 형체 등과 같은 하위 수준의 특징을 표현할 수 있는 기술자를 MPEG-7 표준에서 규정하고 있다. 하지만, 각각의 기술자를 따로 분석함으로써는 성능 향상에 불충분한 점이 있었다. 본 논문에서는 칼라 기술자와 텍스쳐 기술자를 결합하여 영상검색의 성능을 향상시키는 방법을 제안한다. MPEG-7 표준에서 정의한 $l_{1}$-norm방법보다, 본 논문에서는 칼라 히스토그램의 경우 코사인 근사도 계수를, 에지 히스토그램의 경우 유클리디언 디스턴스를 적용 실험하여 진일보한 결과를 도출할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.