• 제목/요약/키워드: Histogram similarity

검색결과 163건 처리시간 0.027초

장애물 위치 정보를 이용한 모바일 로봇의 2차원 지도 작성에 관한 연구 (Using the obstacle position information of the mobile robot in the two-dimensional cartography Study)

  • 이준호;홍현주;강석주
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.30-38
    • /
    • 2014
  • The purpose of this study is to build and manage environment models with line segments from sonar range data on obstacles in unknown and varied environments. The proposed method therefore employs a two-stage data-transform process in order to extract environmental line segments from range data on obstacles. In the first stage, the occupancy grid extracted from the range data is accumulated to form a two-dimensional local histogram grid. In the second stage, a line histogram extracted from a local histogram grid is based on a Hough transform, and matching serves as a means of comparing each of the segments on a global line segments map against the line segments to detect the degree of similarity in the overlap, orientation, and arrangement. Each of these tests is formulated by comparing one of the parameters in the segment representation. After the tests, new line segments can be found at maximum-density cells in the line histogram, and they are composed onto the global line segment map. The proposed technique is demonstrated in experiments in an indoor environment.

비디오 데이터베이스 구축을 위하여 장면전환 검출과 샷 클러스터링을 이용한 비디오 개요 추출 (Video Abstracting Using Scene Change Detection and Sho Clustering for Construction of Efficient Video Database)

  • 표성배
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.75-82
    • /
    • 2002
  • 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 χ2 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이 값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다 또한 실제 TV방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.

  • PDF

저 해상도 변위 히스토그램을 이용한 고성능 변위정보 추출 알고리듬 (A high performance disparity extraction algorithm using low resolution disparity histogram)

  • 김남규;이광도;김형곤;차균현
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.131-143
    • /
    • 1998
  • This paper presents a high performance disparity extraction algorithm that generate a dense and accurate disparity map using low-resolution disparity histogram. Disparity distribution of background and object areas can besegmented from low-resolution disparity histogram. These information can be used to reduce the search area and search range of the high-resolution image resulting reliable disparity information in high speed. The computationally efficient matching pixel count(MPC) similarity measure technique is useed extensively toremove the redundancies inherent in the area-based matching method, and also results robust matching at the boundary region. Resulting maches are further improved using iterative support algorithm and post processing. We have obtained good results on randomdot stereogram and real images obtained in our carmera system.

  • PDF

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using an Improved Partial Histogram Threshold Algorithm

  • Seo Kyung-Sik;Park Seung-Jin
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권3호
    • /
    • pp.171-176
    • /
    • 2005
  • This paper proposes an automatic liver segmentation method using improved partial histogram threshold (PHT) algorithms. This method removes neighboring abdominal organs regardless of random pixel variation of contrast enhanced CT images. Adaptive multi-modal threshold is first performed to extract a region of interest (ROI). A left PHT (LPHT) algorithm is processed to remove the pancreas, spleen, and left kidney. Then a right PHT (RPHT) algorithm is performed for eliminating the right kidney from the ROI. Finally, binary morphological filtering is processed for removing of unnecessary objects and smoothing of the ROI boundary. Ten CT slices of six patients (60 slices) were selected to evaluate the proposed method. As evaluation measures, an average normalized area and area error rate were used. From the experimental results, the proposed automatic liver segmentation method has strong similarity performance as the MSM by medical Doctor.

Human Visual System-aware Dimming Method Combining Pixel Compensation and Histogram Specification for TFT-LCDs

  • Jin, Jeong-Chan;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5998-6016
    • /
    • 2017
  • In thin-film transistor liquid-crystal displays (TFT-LCDs), which are most commonly used in mobile devices, the backlight accounts for about 70% of the power consumption. Therefore, most low-power-related studies focus on realizing power savings through backlight dimming. Image compensation is performed to mitigate the visual distortion caused by the backlight dimming. Therefore, popular techniques include pixel compensation for brightness recovery and contrast enhancement, such as histogram equalization. However, existing pixel compensation techniques often have limitations with respect to blur owing to the pixel saturation phenomenon, or because contrast enhancement cannot adequately satisfy the human visual system (HVS). To overcome these, in this study, we propose a novel dimming technique to achieve both power saving and HVS-awareness by combining the pixel compensation and histogram specifications, which convert the original cumulative density function (CDF) by designing and using the desired CDF of an image. Because the process of obtaining the desired CDF is customized to consider image characteristics, histogram specification is found to achieve better HVS-awareness than histogram equalization. For the experiments, we employ the LIVE image database, and we use the structural similarity (SSIM) index to measure the degree of visual satisfaction. The experimental results show that the proposed technique achieves up to 15.9% increase in the SSIM index compared with existing dimming techniques that use pixel compensation and histogram equalization in the case of the same low-power ratio. Further, the results indicate that it achieves improved HVS-awareness and increased power saving concurrently compared with previous techniques.

Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘 (A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement)

  • 정동길;강동구;양유경;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 이 논문에서는 팬-틸트-줌 기능을 가지는 실시간 능동카메라 시스템에 적합한 2단계 머리 추적 알고리즘을 제안한다. 먼저, 색 수렴 단계에서는 머리의 모양을 타원으로 가정하고 모델 색-히스토그램을 얻는다. 그 후, 모델과 후보 타원의 색-히스토그램간의 유사도를 검사하여 목표 물체의 대략적인 위치를 구하기 위해 mean-shift 방법을 이용한다. 여기에서 영상 내 물체 영역의 색 분포가 카메라의 관찰 방향에 따라 달라지는 것을 고려하기 위하여, 모델 히스토그램 뿐 아니라 이전 프레임에서 얻어진 타원의 색 히스토그램도 함께 고려함으로써 mean-shift의 수렴성을 향상시킨다. 특히, 이전 프레임에서 결정된 타원 내부의 가장자리 영역에 포함되어 있는 배경 색 성분에 의한 오류 누적 문제를 해소하기 위해, 모델 히스토그램을 이용하여 타원의 크기를 적응적으로 축소함으로써 이전 추적 결과중 머리 영역에 해당되는 색 히스토그램을 얻는다. 또한 영상 내의 전역 움직임을 예측하고 이를 보상하여 정확한 초기 위치를 찾음으로써 mean-shift의 색 수렴성을 더욱 향상시킨다. 이 때, 고속 움직임 추정을 위해 1-D 투사 데이터 기반의 방법을 제안한다. 다음 단계에서는, 모양 정보를 이용하여 수렴단계에서 얻어진 타원의 위치와 크기를 보다 정확히 재조정한다. 이를 위해 영상 내 경사도의 방향에 기반한 강건한 모양 유사도 함수를 정의하고 사용한다. 다양한 환경을 고려한 실험을 통하여, 사람의 움직임이 빠른 경우, 영상 내 머리 크기의 변화가 심한 경우, 그리고 배경의 색과 모양이 매우 복잡한 경우에 대해서도 제안한 알고리즘이 비교적 정확히 추적을 수행함을 보였다. 아울러 제안한 알고리즘은 추적을 수행하는데 일반 PC에서 약 30fps의 처리 속도를 보여 실시간 시스템에 적합하다.

대용량 비디오 데이터베이스 구축을 위하여 장면전환 검출과 샷 클러스터링을 이용한 비디오 개요 추출 (Video Abstracting Using Scene Change Detection and Shot Clustering for Construction of Efficient Video Database)

  • 신성윤;표성배
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.111-119
    • /
    • 2006
  • 본 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\chi2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.

  • PDF

대용량 비디오 데이터베이스 구축을 위한 비디오 개요 추출 (Video Abstracting Construction of Efficient Video Database)

  • 신성윤;표성배;이양원
    • 한국컴퓨터정보학회지
    • /
    • 제14권1호
    • /
    • pp.255-264
    • /
    • 2006
  • 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 ${\chi}^2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.

  • PDF

지역적 유사성을 이용한 픽셀 값 예측 기법에 기초한 가역 데이터 은닉 알고리즘 (Reversible Data Embedding Algorithm based on Pixel Value Prediction Scheme using Local Similarity in Image)

  • 정수목
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.617-625
    • /
    • 2017
  • 본 논문에서는 기밀 데이터를 커버 이미지에 은닉하는 효과적인 가역 데이터 은닉 기법을 제안하였다. 제안된 기법에서는 이미지에 존재하는 지역적 유사성을 이용하여 픽셀 값을 정확하게 예측하여 예측 이미지를 생성하였고, 생성된 예측 이미지와 원본 커버 이미지를 사용하여 차분 시퀀스를 생성한 후, 히스토그램 쉬프트 기법을 적용하여 기밀데이터가 은닉된 스테고 이미지(stego-image)를 생성하였다. 스테고 이미지로부터 기밀 데이터를 추출하고 원본 커버 이미지를 손실 없이 복원할 수 있다. 제안된 기법을 적용하면 기존의 APD 기법에 비하여 더 많은 기밀 데이터를 은닉할 수 있음을 실험으로 확인하였다.

칼라와 에지 히스토그램 기술자를 이용한 영상 마이닝 향상 기법 (The Usage of Color & Edge Histogram Descriptors for Image Mining)

  • 안성옥;박동원
    • 컴퓨터교육학회논문지
    • /
    • 제7권5호
    • /
    • pp.111-120
    • /
    • 2004
  • 영상의 칼라, 텍스쳐, 오브젝트의 형체 등과 같은 하위 수준의 특징을 표현할 수 있는 기술자를 MPEG-7 표준에서 규정하고 있다. 하지만, 각각의 기술자를 따로 분석함으로써는 성능 향상에 불충분한 점이 있었다. 본 논문에서는 칼라 기술자와 텍스쳐 기술자를 결합하여 영상검색의 성능을 향상시키는 방법을 제안한다. MPEG-7 표준에서 정의한 $l_{1}$-norm방법보다, 본 논문에서는 칼라 히스토그램의 경우 코사인 근사도 계수를, 에지 히스토그램의 경우 유클리디언 디스턴스를 적용 실험하여 진일보한 결과를 도출할 수 있었다.

  • PDF