• Title/Summary/Keyword: Histogram shift

Search Result 56, Processing Time 0.026 seconds

Object Recognition and Tracking using Histogram Through Successive Frames (연속적인 비디오 프레임에서의 히스토그램을 이용한 객체 인식 및 추적)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.274-278
    • /
    • 2009
  • Recently, the research which concerns the object class recognition has been done. Although an object tracking based on most of histograms employs a colored model to improve robustness, the system is not reliable enough yet. In this paper, we presents a method to express and track an object by using the histograms which are composed with visual features through successive frames. The experimental results shows that this method is reliable to track a car within 80m distance from camera.

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

Depth Map coding pre-processing using Depth-based Mixed Gaussian Histogram and Mean Shift Filter (깊이정보 기반의 혼합 가우시안 분포 히스토그램과 Mean Shift Filter를 이용한 깊이정보 맵 부호화 전처리)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.175-177
    • /
    • 2010
  • 본 논문에서는 MPEG 의 3차원 비디오 시스템의 표준 깊이정보 맵에 대한 효율적인 부호화를 위하여 전처리 방법을 제안한다. 현재 3차원 비디오 부호화(3DVC)에 대한 표준화가 진행 중에 있지만 아직 깊이정보 맵의 부호화 방법에 대한 표준이 확정되지 않은 상태이다. 제안하는 기법에서는 우선, 입력된 깊이정보 맵에 대하여 원래의 히스토그램 분포를 가우시안 혼합모델(GMM)기반의 EM 군집화 기법에 의한 방법으로 분리 후, 분리된 히스토그램을 기반으로 깊이정보 맵을 여러 개의 영상으로 분리한다. 그 후 분리된 각각의 영상을 배경과 객체에 따라 다른 조건의 mean shift filter로 필터링한다. 결과적으로 영상내의 각 영역 경계는 최대한 살리면서 영역내의 화소 값에 대해서는 평균 연산을 취하여 부호화시 효율을 극대화 하고자 하였다. 실험조건은 $1024{\times}768$ 영상에 대해서 50 프레임으로 H.264/AVC base 프로파일로 부호화를 진행하였다. 최종 실험결과 bit rate는 대략 23% ~ 26% 정도 감소하고 부호화 시간도 다소 줄어드는 것을 확인 할 수 있었다.

  • PDF

Smart Photo Clustering Based on Dominant Color Histogram Feature and Mean-Shift Clustering (주 색상 히스토그램 특징과 Mean-Shift 알고리즘을 사용한 사진 자동분류)

  • Na, In-Seop;Choi, Jun-Yong;Cho, Wan-Hyun;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.633-636
    • /
    • 2012
  • 최근 디지털카메라와 스마트 폰 등의 모바일 기기가 급속도로 발전 하면서 언제, 어디서나 손쉽게 사진을 찍을 수 있게 되었다. 이런 환경의 변화는 수없이 많은 사진을 양산하게 되었고, 손쉽게 많이 찍은 사진에 대한 분류에 불필요한 시간을 많이 보내게 되었다. 따라서 보다 편리하게 촬영된 사진들을 분류 관리하기에 적합한 자동화된 프로그램이 필요하게 되었다. 이 논문에서는 GPS나 시간 등의 메타 정보에 의존하지 않고 오직 사진의 주 색상을 이용한 히스토그램 특징과 Mean Shift 분류기를 사용하여 대략적인 분류를 시도하려했다. 실험결과를 토대로 살펴보면, 제안된 방법은 사진의 주 색상이 확실한 경우는 잘 분류할 수 있지만 여러 가지 색상이 복잡하게 혼합된 경우와 주 색상을 찾기 어려운 경우에는 분류에 한계가 있음을 알 수 있었다. 따라서 제안된 알고리즘은 사진과 영상들을 개략적인 분류를 실시할 때 주 색상 히스토그램특징이 의미 있는 전역적 특징(Global Feature)중의 하나로 생각된다.

Using Mean Shift Algorithm and Self-adaptive Canny Algorithm for I mprovement of Edge Detection (경계선 검출의 향상을 위한 Mean Shift 알고리즘과 자기 적응적 Canny 알고리즘의 활용)

  • Shin, Seong-Yoon;Pyo, Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.33-40
    • /
    • 2009
  • Edge detection is very significant in low level image processing. However, majority edge detection methods are not only effective enough cause of the noise points' influence, even not flexible enough to different input images. In order to sort these problems, in this paper an algorithm is presented that has an extra noise reduction stage at first, and then automatically selects the both thresholds depending on gradient amplitude histogram and intra class minimum variance. Using this algorithm, can fade out almost all of the sensitive noise points, and calculate the propose thresholds for different images without setting up the practical parameters artificially, and then choose edge pixels by fuzzy algorithm. In finally, get the better result than the former Canny algorithm.

Reversible Watermarking Using Adaptive Edge-Guided Interpolation

  • Dai, Ningjie;Feng, Guorui;Zeng, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.856-873
    • /
    • 2011
  • Reversible watermarking is an open problem in information hiding field, with embedding the encoded bit '1' or '0' into some sensitive images, such as the law enforcement, medical records and military images. The technique can retrieve the original image without distortion, after the embedded message has been extracted. Histogram-based scheme is a remarkable breakthrough in reversible watermarking schemes, in terms of high embedding capacity and low distortion. This scheme is lack of capacity control due to the requirement for embedding large-scale data, because the largest hidden capacity is decided by the amount of pixels with the peak point. In this paper, we propose a reversible watermarking scheme to enlarge the number of pixels with the peak point as large as possible. This algorithm is based on an adaptive edge-guided interpolation, furthermore, hides messages by interpolation-error, i.e. the difference between the original and interpolated image value. Simulation results compared with other state-of-the-art reversible watermarking schemes in this paper demonstrate the validity of the proposed algorithm.

Reversible Watermarking with Adaptive Embedding Threshold Matrix

  • Gao, Guangyong;Shi, Yun-Qing;Sun, Xingming;Zhou, Caixue;Cui, Zongmin;Xu, Liya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4603-4624
    • /
    • 2016
  • In this paper, a new reversible watermarking algorithm with adaptive embedding threshold matrix is proposed. Firstly, to avoid the overflow and underflow, two flexible thresholds, TL and TR, are applied to preprocess the image histogram with least histogram shift cost. Secondly, for achieving an optimal or near optimal tradeoff between the embedding capacity and imperceptibility, the embedding threshold matrix, composed of the embedding thresholds of all blocks, is determined adaptively by the combination between the composite chaos and the average energy of Integer Wavelet Transform (IWT) block. As a non-liner system with good randomness, the composite chaos is suitable to search the optimal embedding thresholds. Meanwhile, the average energy of IWT block is calculated to adjust the block embedding capacity, and more data are embedded into those IWT blocks with larger average energy. The experimental results demonstrate that compared with the state-of-the-art reversible watermarking schemes, the proposed scheme has better performance for the tradeoff between the embedding capacity and imperceptibility.

Contrast Enhancement based on Gaussian Region Segmentation (가우시안 영역 분리 기반 명암 대비 향상)

  • Shim, Woosung
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.608-617
    • /
    • 2017
  • Methods of contrast enhancement have problem such as side effect of over-enhancement with non-gaussian histogram distribution, tradeoff enhancement efficiency against brightness preserving. In order to enhance contrast at various histogram distribution, segmentation to region with gaussian distribution and then enhance contrast each region. First, we segment an image into several regions using GMM(Gaussian Mixture Model)fitting by that k-mean clustering and EM(Expectation-Maximization) in $L^*a^*b^*$ color space. As a result region segmentation, we get the region map and probability map. Then we apply local contrast enhancement algorithm that mean shift to minimum overlapping of each region and preserve brightness histogram equalization. Experiment result show that proposed region based contrast enhancement method compare to the conventional method as AMBE(AbsoluteMean Brightness Error) and AE(Average Entropy), brightness is maintained and represented detail information.

Real-time Traffic Sign Recognition using Rotation-invariant Fast Binary Patterns (회전에 강인한 고속 이진패턴을 이용한 실시간 교통 신호 표지판 인식)

  • Hwang, Min-Chul;Ko, Byoung Chul;Nam, Jae-Yeal
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.562-568
    • /
    • 2016
  • In this paper, we focus on recognition of speed-limit signs among a few types of traffic signs because speed-limit sign is closely related to safe driving of drivers. Although histogram of oriented gradient (HOG) and local binary patterns (LBP) are representative features for object recognition, these features have a weakness with respect to rotation, in that it does not consider the rotation of the target object when generating patterns. Therefore, this paper propose the fast rotation-invariant binary patterns (FRIBP) algorithm to generate a binary pattern that is robust against rotation. The proposed FRIBP algorithm deletes an unused layer of the histogram, and eliminates the shift and comparison operations in order to quickly extract the desired feature. The proposed FRIBP algorithm is successfully applied to German Traffic Sign Recognition Benchmark (GTSRB) datasets, and the results show that the recognition capabilities of the proposed method are similar to those of other methods. Moreover, its recognition speed is considerably enhanced than related works as approximately 0.47second for 12,630 test data.