Object Recognition and Tracking using Histogram Through Successive Frames

연속적인 비디오 프레임에서의 히스토그램을 이용한 객체 인식 및 추적

  • 박호식 (오산대학 디지털전자과) ;
  • 배철수 (관동대학교 전자통신공학과)
  • Published : 2009.03.31

Abstract

Recently, the research which concerns the object class recognition has been done. Although an object tracking based on most of histograms employs a colored model to improve robustness, the system is not reliable enough yet. In this paper, we presents a method to express and track an object by using the histograms which are composed with visual features through successive frames. The experimental results shows that this method is reliable to track a car within 80m distance from camera.

히스토그램에 의한 객체 유형 인식 방법은 최근 들어 많은 연구가 이루어지고 있다. 그러나 대부분의 히스토그램 기반의 객체 추적이 칼라 모델을 사용하여 견실성을 개선하였지만 아직 충분히 견실하다고 할 수 없다. 이러한 단점을 보안하기 위하여 본 논문에서는 연속적인 프레임에서 히스토그램을 이용하여 객체를 표현하고 추적하는 방법을 제시하고자 한다. 자동차를 대상으로 실험한 결과 80m 거리 이내에서 신뢰성 있는 방법임을 확인하였다.

Keywords

References

  1. D. M. Gavrila. The visual analysis of human movement: A survey. Computer Vision and Image Understanding, 73(1):82-98, 1999 https://doi.org/10.1006/cviu.1998.0716
  2. M. J. Black and A. D. Jepson. Eigentracking: Robust matching and tracking articulated objects using a view based representation. Intrenational Journal Computer Vision, 26(1):63-84, 1998 https://doi.org/10.1023/A:1007939232436
  3. M. Isard and A. Blake. Condensation conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1):5-28, 1998 https://doi.org/10.1023/A:1008078328650
  4. M. Swain and D. Ballard. Color indexing. Intl. J. of Computer Vision, 7(1):11-32, 1991 https://doi.org/10.1007/BF00130487
  5. Z. Zivkovic and B. Krose. An em-like algorithm for color-histogram-based object tracking. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2004
  6. Chris Dance, Jutta Willamowski, Lixin Fan, Cedric Bray, and Gabriela Csurka. Visual categorization with bags of keypoints. In ECCV International Workshop on Statistical Learning in Computer Vision, 2004
  7. Corinna Cortes and Vladimir Vapnik. Support vector networks. Machine Learning, 20(3):273-297, 1995 https://doi.org/10.1007/BF00994018
  8. Thomas Leung and Jitendra Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vision, 43(1):29-44, 2001 https://doi.org/10.1023/A:1011126920638
  9. Derk Crezee Athanasios K. Noulas Zoran Zivkovic Ben. J.A. Krose. "Visual Object Tracking and Recognition in a Visual Vocabulary Framework", ASCI 2007