• Title/Summary/Keyword: Hilbert space theory

Search Result 33, Processing Time 0.036 seconds

APPLICATIONS OF FIXED POINT THEORY IN HILBERT SPACES

  • Kiran Dewangan
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • In the presented paper, the first section contains strong convergence and demiclosedness property of a sequence generated by Karakaya et al. iteration scheme in a Hilbert space for quasi-nonexpansive mappings and also the comparison between the iteration scheme given by Karakaya et al. with well-known iteration schemes for the convergence rate. The second section contains some applications of the fixed point theory in solution of different mathematical problems.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

TOPOLOGICAL APPROACH FOR THE MULTIPLE SOLUTIONS OF THE NONLINEAR PARABOLIC PROBLEM WITH VARIABLE COEFFICIENT JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • We get a theorem which shows that there exist at least two or three nontrivial weak solutions for the nonlinear parabolic boundary value problem with the variable coefficient jumping nonlinearity. We prove this theorem by restricting ourselves to the real Hilbert space. We obtain this result by approaching the topological method. We use the Leray-Schauder degree theory on the real Hilbert space.

NONTRIVIAL PERIODIC SOLUTION FOR THE SUPERQUADRATIC PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2009
  • We show the existence of a nontrivial periodic solution for the superquadratic parabolic equation with Dirichlet boundary condition and periodic condition with a superquadratic nonlinear term at infinity which have continuous derivatives. We use the critical point theory on the real Hilbert space $L_2({\Omega}{\times}(0 2{\pi}))$. We also use the variational linking theorem which is a generalization of the mountain pass theorem.

  • PDF

A Study on an Optimized Constant Pitch Propeller (일정피치 추진기의 최적화 연구에 관하여)

  • 장택수;홍사영
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2002
  • Optimization of marine propellers of constant pitch is studied, with the help of the infinite dimensional optimization (Jang and Kinoshita, 2000a), which is based on the Hilbert space theory. As a numerical example, the MAU type propeller is considered and used as he initial guess for the optimization method. The numerical computations for an optimal marine propeller are performed for the constant pitch distribution. In addition, a new optimization is suggested with the constraint of constant pitch during optimization.

The state space of a canonical linear system

  • Yang, Mee-Hyea
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.447-459
    • /
    • 1995
  • A fundamental problem is to construct linear systems with given transfer functions. This problem has a well known solution for unitary linear systems whose state spaces and coefficient spaces are Hilbert spaces. The solution is due independently to B. Sz.-Nagy and C. Foias [15] and to L. de Branges and J. Ball and N. Cohen [4]. Such a linear system is essentially uniquely determined by its transfer function. The de Branges-Rovnyak construction makes use of the theory of square summable power series with coefficients in a Hilbert space. The construction also applies when the coefficient space is a Krein space [7].

  • PDF

APPLICATIONS ON THE BESSEL-STRUVE-TYPE FOCK SPACE

  • Soltani, Fethi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.875-883
    • /
    • 2017
  • In this work, we establish Heisenberg-type uncertainty principle for the Bessel-Struve Fock space ${\mathbb{F}}_{\nu}$ associated to the Airy operator $L_{\nu}$. Next, we give an application of the theory of extremal function and reproducing kernel of Hilbert space, to establish the extremal function associated to a bounded linear operator $T:{\mathbb{F}}_{\nu}{\rightarrow}H$, where H be a Hilbert space. Furthermore, we come up with some results regarding the extremal functions, when T are difference operators.

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

PALAIS-SMALE CONDITION FOR THE STRONGLY DEFINITE FUNCTIONAL

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.461-471
    • /
    • 2009
  • Let ${\Omega}$ be a bounded subset of $R^n$ with smooth boundary and H be a Sobolev space $W_0^{1,2}({\Omega})$. Let $I{\in}C^{1,1}$ be a strongly definite functional defined on a Hilbert space H. We investigate the conditions on which the functional I satisfies the Palais-Smale condition. Palais-Smale condition is important for determining the critical points for I by applying the critical point theory.

  • PDF

Application of the Infinite Dimensional Optimization to Marine Propellers and Its Mathematical Uniqueness (무한차원최적화의 추진기에의 응용과 그의 수학적 유일성 고찰)

  • Jang, Taek-S.;Hong, Sa-Y.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.231-236
    • /
    • 2002
  • By using the infinite dimensional optimization[Jang and Kinoshita(2000)]. which is based on the Hilbert space theory, optimal marine propellers are studied. The mathematical uniqueness for the optimized propeller is shown in this study. As a numerical example, the MAU type propeller is considered and used as the initial guess for the optimization method. The numerical results for an optimal marine propeller is illustrated for the pitch distribution.

  • PDF