• Title/Summary/Keyword: Highway embankment

Search Result 47, Processing Time 0.022 seconds

A Study on the Compaction and Consistency of Soil (흙의 다짐과 Consistency에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4251-4258
    • /
    • 1976
  • In the construction of earth dam, embankment and highway by filling, a compaction contributes to increasing the density of soil by applying pressure. The effect of compaction depends on various factors such as soil type, moisture content, gradation, consistency, and compaction energy. In this study, the correlations amone maximum dry density, moisture content, dry density, and moisture content are analyzed. Some results obtained in this study are summarizep as follows. 1. The maximum dry density sinoreases with increased of optimum moisture content and the correlations of them can be represented by; ${\gamma}$dmx=a-b(W0) 2. Maximum dry density and liquid limit show negative linear correlation and can be represented by; ${\gamma}$dmx=a-b(LL). 3. Optimum moisture content and liquid limit, plastic limit show positive linear correlation and can be represented by the following equation, W0=a+b(LL) W0=a+b(PL). 4. Liquid limit and plastic limit show positive linear correlation, and can be represented by the following equation, LL=a+b(PL).

  • PDF

The Effects of Embankment Condition of Subgrade on Compaction. (노상 성토조건에 의한 다짐영향)

  • 노한성;김태수;최영철;백종은
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.357-364
    • /
    • 2002
  • This paper describes the feasibility of compacting subgrade layer in thicker lifts than currently permitted as 20 cm. This project involved constructing and testing a full scale test section in highway. Soil stiffness in field was evaluated by a nondestructive testing method, called Geogage. Quality control tests and FE Analysis were also conducted. Typical dynamic compaction roller of 11ton weight is applied for full scale test and a Mohr-Coulomb model and Plane strain condition are used for FE Analysis. The results showed that compaction-induced stress and dissipated energy are mainly depend on depth of soil and it could be possible to increase thickness of a lift.

  • PDF

A Characteristic on Difference of Water Content with Temperature and Compaction of Gypsum to Utilize Fill Material (석고의 축조재료 활용을 위한 온도조건에 따른 함수비 변화와 다짐 특성)

  • Seo, Dong-Uk;Yu, Bong-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.47-54
    • /
    • 2012
  • As a large construction such as highway, dam, reclaimed land etc. increase in number more and more, large amount of fill materials are required. It is needed to utilize a gypsum which is a by-product yielded from chemical plants, as fill materials. Though some studies have been conducted to know a engineering characteristic of gypsum, it is not certain that water contents were checked at $45^{\circ}C$ dry oven. This study proposed that water contents must be measured at $45^{\circ}C$ dry condition because gypsum is changed to other types as a dry temperature. As the results obtained by compaction tests, it is found that moisture of gypsum in compaction must be within -5.0~2.5 % O.M.C (optimal moisture content).

Case study on Construction and Improvement of Rahmen Structures in Deep Soft Clay Deposit (대심도 연약지반에 설치된 라멘 구조물의 시공 및 보강사례)

  • Lee, Sa-Ik;Choi, Young-Chul;Yoo, Sang-Ho;Kim, Tae-Hyung;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Structures that have constructed in soft clay might suffer from many issues related to consolidation settlement or lateral movement of soft-clay during long-term period. Therefore, it is important to establish proper design and construction processes related to site investigation, soil improvement, construction management, and so on. This case study focused on the construction of the rahmen structure supported by pile foundations. Especially, the structure in this case had been constructed without improving underlying soft clay and before constructing backfill embankment due to the limited construction time and the traffic connection of the old road crossing new highway. Therefore, in order to satisfy the structural stability, the construction processes and countermeasure methods were carefully planned based on the results of preliminary numerical analyses and monitoring of ground behaviors. Through the trial and error precess during the construction, the structures had been successfully constructed.

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

Numerical Evaluation of Geosynthetic Reinforced Column Supported Embankments (개량체 기둥지지 성토공법의 지오그리드 보강효과에 대한 수치해석)

  • Jung, Duhwoe;Jeong, Sidong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.13-22
    • /
    • 2021
  • Pile or column supported embankments have been increasingly employed to construct highway or railway embankments over soft soils. Piles or columns of stiffer material installed in the soft ground can provide the necessary support by transferring the embankment load to a firm stratum using a soil arching. However, there has been reported to occur a relatively large differential settlement between the piles and the untreated soils. Geosynthetic reinforced pile or column supported embankment (GRPS) is often used to minimize the differential settlement. Two dimensional finite element anlyses have been performed on both the column supported embankments and the geogrid reinforced column supported embankments by using a PLAXIS 2D to evaluate the soil arching effect. Based on the results obtained from finite element analyses, the stress reduction ratio decreases as the area replacement ratio increases in the column supported embankments. For the geogrid reinforced column supported embankments, the geogrid reinforcemnt can reduce differential settlements effectively. In additon, the use of stiffer geogrid is appeared to be more effective in reducing the differential settlements.

A study on the stability of pile bridge abutment on soft ground undergoing lateral flow (연약지반에서의 말뚝기초 교대의 측방유동 대책공법 적용에 관한 연구)

  • 오일록;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.753-760
    • /
    • 2003
  • An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M$_{I}$) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s.

  • PDF

Liquefaction of Embankments on Sandy Soils and the Optimum Countermeasure against the Liquefaction (사질토 지반 위에 축조된 제방의 액상화 및 최적 대책 공법)

  • Park, Young-Ho;Kim, Sung-Ryul;Kim, Sung-Hwan;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.15-21
    • /
    • 2000
  • 액상화되기 쉬운 모래지반 위에 축조된 제방의 지진시 거동을 조사하고 액상화 경감을 위한 대책공법의 효과를 비교하기 위하여 12가지 경우에 대해 진돈대 시험을 수행하였다. 본 시험에는 널말뚝, 자갈배수재, 모래다짐 말뚝과 강관말뚝 등의 대책공법이 적용되었다. 진동대 시험에 사용된 투명토조의 길이는 194cm이고 폭은 44cm 그리고 높이는 60cm이다. 기초지반은 포화된 모래이며 수중침강법을 적용하여 상대밀도 약 30%로 조성되었다. 이 포화된 느슨한 모래지만 위에 15cm 높이의 제방이 경사 1:1.5로 축조되었다. 진동대 시험시 제방과 기초지반의 거동을 측정하기 위해서 간극수압계 12개, 가속도계 4개 및 LVDT 2개가 시험모델에 설치되었다. 진동대의 크기는 2m$\times$2m이며, 진동시의 입력가속도는 0.1g에서 시작하여 최고 0.4g까지 증가시켰다. 본 모델에 적용된 공법 모두가 일반적인 진동법위에서 액상화 발생을 억제시키는데 유용한 것으로 증명이 되었으며, 그 중에서 모래다짐말뚝이 액상화로 인한 피해를 감소시키는데 가장 효과적인 것으로 나타났다. 또한 각각의 대책공법에 대한 최적 배치안의 본 연구에서 제시되었다.

  • PDF

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Structural assessment of Anti-Freezing Layer with use of Falling Weight Deflectormeter Deflection (Falling Weight Deflectormeter를 이용한 동상방지층의 구조적 특성 분석)

  • Lee, Moon-Sup;Kim, Boo-Il;Jeon, Sung-Il;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • Until now, the thickness design of anti-freezing layer has been empirically conducted using the frost depth determined from the freezing index. This approach cannot consider the structural properties of anti-freezing layer, which can cause the over-design of pavement structure. This paper presents results of structural evaluation of anti-freezing layer using the Falling Weight Deflectormeter (FWD) deflections. The FWD testing was directly conducted on top of the subbase layer located at the embankment, cutting, and boundary area of each section. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer. The deflection reduction rates are 15~55% in the embankment, 11~64% in the cutting, and 2~38% in the boundary, respectively. It was also found that the use of antifree zing layer enables to reduce the Surface Curvature Index (SCI) values up to 24 percent. Fatigue lives show that pavement structure with antifreezing layer are about two times higher than the those without anti-freezing layer. This fact indicates that the anti-freezing layer should be considered as a structural layer in the asphalt pavement system.