• Title/Summary/Keyword: Highway construction

Search Result 861, Processing Time 0.031 seconds

Effect of the Existing Rust on Bond Strength of Concrete and Reinforcement

  • Lee, Byung-Duck;Kim, Kook-Han;Yu, Hwan-Gu;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.478-481
    • /
    • 2004
  • An experimental investigation on the relationship between corrosion of reinforcement and bond strength in pull-out test specimen has been conducted to establish the allowable limit of rust of reinforcement in the construction field. The reinforcing bars used in this study were rusted before embedded in pull-out test specimen. The first component of this experiment is to make reinforcing bar rust electrically based on Faraday's theory to be 2, 4, 6, 8 and $10\%$ of reinforcing bar weight. For estimation of the amount of rust by weight, Clarke's solution and shot blasting were adopted and compared. Parameters also include 24 and 45MPa of concrete compressive strengths and diameter of reinforcing bar (16, 19 and 25mm). Pull-out tests were carried out according to KS F 2441 and ASTM C 234. Results show that up to $2\%$ of rust increases the bond strength regardless of concrete strength and diameter of reinforcing bar. As expected, the bond strength increases as compressive strength of concrete increases and the diameter of bar decreases.

  • PDF

Extraction of Highway′s Superelevation Using GPS Real Time Kinematic Surveying (GPS 실시간 동적측위법을 이용한 도로 편경사 추출)

  • 서동주;장호식;이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.183-190
    • /
    • 2002
  • This study is about the extraction of highway's superelevation using real time kinematic surveying among of GPS surveying methods which is economic method to construct data base in the side of highway maintain management. Using the developed vehicle, center line and shoulder of highway are measured and enough precision is obtained after analyzing the result. The result is show that 1.3 cm to 2.0 cm error in the clothed and about 0.8 cm to 1.2 cm error in the circular curve. Those errors are proved error to lane making during construction. This study is expected to become efficient method for extraction of highway alignment elements in the Mobile Mapping System.

The Seismic Behavior of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel (개착식 터널에서 파형강판 라이닝의 동적 거동 특성)

  • Kim Jung-Ho;Kim Nag-Young;Lee Yong-Jun;Lee Seung-Ho;Chung Hyung-Sik
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.233-247
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the seismic behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. The compressive stress which is calculated in the Corrugated Steel Plate Lining by the seismic load is decreased as the backfill height increases and the cut slope grows gentle. Also, the moment shows the tendency of decrease according to the increase of the backfill height. But in the case of the relative density of the backfill soil is small, the moment increases according to the increase of the backfill height and affects the dynamic behaviour characteristic. So it is considered that the relative density of the backfill soil is also the important point. As the result in analyzing the seismic response characteristics of the reinforcement spacing of the Corrugated Steel Plate, the variation in the compressive force is hardly happened, but the moment and the shear force increase on the reinforcement spacing being narrow.

  • PDF

A Study on Utilization of Private Capital for Efficient Highway Pavement Management (효율적인 고속도로 유지관리를 위한 민간자본 활용방안 연구)

  • Lee, Inbum;Lee, Yongjun;Park, Samjae;Cho, Hyunje;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.1
    • /
    • pp.3-11
    • /
    • 2018
  • In order to find methods to encourage active private participation for efficient road maintenance, this study examined the status of the road improvement project and the development of the private capital utilization improvement project. Based on this, the study conducted a case study and a financial feasibility study that applied the new business method and selected the applicable business method. As a result, it is analyzed that the method of using Crowd Funding is more advantageous than the private scheme of the private capital utilization improvement project. This is because it will be highly effective in raising funds from users of highway users, especially users of improvement projects. In addition, it can also mean that the road users who suffer from inconvenience due to the construction can return the toll profit of road construction to the user.

A Study on the Collapse Pattern of Road Tunnel under Construction (도로 터널 사공중 발생된 붕락형태 분석 연구)

  • Lee, Su-Gon;Kim, Nag-Young;Jeon, Bok-Hyeon
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.115-123
    • /
    • 2007
  • Recently, accelerating population and advanced economy result in extending old freeways and constructing new freeways. To make a good freeway shape, tunnel constructions are also rapidly increasing. Therefore, a possibility of a collapse during a tunnel excavation is getting higher in a proportionate manner. Especially, tunnel excavation has increased in poor geological condition in order to maintain good alignment of road and the collapse of tunnel has often happened without reinforcement method. This research paper will analyze for ms and causes of the collapses for different geological conditions and applied reinforcement solutions by investigating typical collapse sites during highway tunnel constructions.

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.

Utilization of Fly Ash in Asphaltic Concrete Mixtures

  • Min, Jeong-Ki
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.85-91
    • /
    • 2000
  • Dwindling supplies and increasing costs of conventional highway materials used in road construction as well as concerns over shrinking landfill spaces prompt researchers to investigate the use of waste products, such as fly ash, as substitute materials in highway construction. The highway industry is capable of utilizing waste materials in large quantities if their effect on pavement performance proves to be technically, economically and environmentally satisfactory. This research examines the effects of fly ash when used as partial replacement of aggregate in asphaltic concrete mixtures. And measuring the effect of fly ash on bulk specific gravity, air void, indirect tensile strength (ITS) under dry and wet conditioning as well as the tensile strength ratio (TSR) of asphaltic concrete mixture. The results indicated that asphaltic concrete mixtures containing 2% and 5% fly ash produced about the same TSR value as control mixture. And all of the mixtures met the minimum ITS and TSR requirements established by the South Carolina Department of Transportation (SC DOT) for Type 1A surface courses. At this point and with this limited study, these asphaltic concrete mixtures is recommended in several applications such as parking lot, secondary roads and driveways.

  • PDF

A Study of Qualitative and Quantitative Risk Assessment for Highway Safety Facilities (고속도로 교통안전시설물의 정성적 및 정량적 위험도분석 연구)

  • Ji, Dong-Han;O, Yeong-Tae;Choi, Hyun-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.99-109
    • /
    • 2007
  • Risk elements of highway safety facilities are affected by complex environments. Thus, risk-based approach for traffic safety facilities is needed. For this, in this study, qualitative and quantitative risk assessment methodology and procedure for highway safety facilities is proposed, which can be used as risk-based approach incorporating VE process. Also, for the quantitative risk assessment, event tree using EPDO(Equivalent Property Damage Only) with respect to frequency and magnitude of risk events is introduced. As a result, risk index of alternative 1(140cm) and 2(127(cm) which can be used as performance factor in VE approach are estimated.

Heat Transfer Analysis for Asphalt Mixture Temperature Variation due to Wind Speed (풍속에 따른 포설 아스팔트 혼합물의 온도변화에 대한 열전달 해석)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.

EVALUATION OF COST-TIME RELATIONSHIPS FOR CONTRACTORS PARTICIPATING IN COST-PLUS-TIME BIDDING

  • Saeed Abdollahi Sean Pour;Hyung Seok David Jeong
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.479-487
    • /
    • 2013
  • State Highway Agencies (SHAs) have started utilizing cost-plus-time bidding (A+B bidding) since Federal Highway Agency (FHWA) declared it operational on May 4, 1995. Although this technique has successfully accelerated many projects by incorporating construction time in the bidding competition, a framework to illustrate the interactions of incentive/disincentive (I/D) rates on the competitiveness of contractors participating in the bid competition is yet to be developed. In a previous research, authors indicated that for each bid competition there is an efficient cap for I/D rates which are dictated by the capabilities of contractors in project acceleration. However, the results of previous study were based on the assumption that there is a statistically significant relationship between cost and time. In this study, the entire cost-plus-time projects implemented by the Oklahoma Department of Transportation (ODOT) were investigated. Then the significance of relationship between cost and time were analyzed for each contractor utilizing Analysis of Variance (ANOVA) technique, and the price-time function of each contractor was determined by regression analysis. The results of the analysis indicate that there is a significant relationship between cost and time for the majority of contractors. However, a quadratic relationship is not always significant and for some contractors a linear price-time relationship is significant. The results of this project can be used not only by ODOT to optimize the incentive/disincentive rates but also by contractors to determine the most competitive strategies of other bid participants.

  • PDF