• Title/Summary/Keyword: Higher-index-polymer

Search Result 76, Processing Time 0.023 seconds

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health (자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.10-15
    • /
    • 2020
  • Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook;Choi, Youngmin;Kim, Young-Uk;Lee, Woojin;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

Waveguiding Effect in Electroabsorption Modulators: Passivation Layers and Their Impact on Extinction Ratios

  • Shin, Dong-Soo
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2005
  • Waveguide structures of the stand-alone electroabsorption (EA) modulator and the electroabsorption modulated laser (EML) are investigated using the 3D beam propagation method. The EA waveguide structures with InP-based passivation layers show saturation in the extinction ratio (ER) due to the stray light traveling through the passivation layers. This paper demonstrates that narrower passivation layers suppress stray-light excitation in the EA waveguide, increasing the ER. A taper structure in the isolation section of the EML waveguide can reduce the mode mismatch and suppress the excitation of the stray light, increasing the ER further. Low-index-polymer passivation layers can confine the mode more tightly in the active waveguide, yielding an even higher ER.

  • PDF

Reliability-based modeling of punching shear capacity of FRP-reinforced two-way slabs

  • Kurtoglu, Ahmet Emin;Cevik, Abdulkadir;Albegmprli, Hasan M.;Gulsan, Mehmet Eren;Bilgehan, Mahmut
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • This paper deals with the reliability analysis of design formulations derived for predicting the punching shear capacity of FRP-reinforced two-way slabs. Firstly, a new design code formulation was derived by means of gene expression programming. This formulation differs from the existing ones as the slab length (L) was introduced in the equation. Next, the proposed formulation was tested for its generalization capability by a parametric study. Then, the stochastic analyses of derived and existing formulations were performed by Monte Carlo simulation. Finally, the reliability analyses of these equations were carried out based on the results of stochastic analysis and the ultimate state function of ASCE-7 and ACI-318 (2011). The results indicate that the prediction performance of new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

Analysis of Degradation Behaviors of Geomembrane by Accelerated Test under UV Exposure Conditions (자외선 노출조건 하에서 가속시험에 의한 지오멤브레인의 분해거동 해석)

  • Park, Yeong Mog;Khan, Belas Ahmed;Jeon, Han Yong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.5-14
    • /
    • 2013
  • In this paper the effect of UV (ultraviolet) exposure on HDPE (high density polyethylene)-smooth and f-PP (flexible polypropylene) geomembranes is evaluated under UVB-313 (ultraviolet wavelength 290-315 nm) exposure. Tensile property, melt flow index (MFI), oxidation induction time (OIT), both standard-OIT and high pressure-OIT and Fourier transform infrared spectroscopy/attenuated total reflectance (FTIR/ATR) results are discussed. Although tensile properties of the exposed geomembrane samples remained unchanged, the depletion of antioxidants was found higher for f-PP than for HDPE geomembrane. Arrhenius model by extrapolation was used on the data to predict the antioxidant lifetime to a typical site temperature of $20^{\circ}C$. There was no significant difference between the MFI value of the virgin and UV exposed HDPE geomembrane samples but a decrease in MFI was found in f-PP geomembrane that signifies that crosslinking has occurred. From FTIR spectra, the small peak (near $1750\;cm^{-1}$) observed in the spectrum of UV exposed sample corresponds to a carbonyl (C=O) linkage, which suggests that oxidation has occurred in the polymer structure, and another new band for f-PP between 3100 and $3500\;cm^{-1}$ is attributed to a hydroxyl bond and/or hydroperoxide bond.

Bulk Polymerization of L-lactide with Mixed Aluminum Organometallic Catalysts (Al계 유기금속화합물 혼합촉매 시스템을 이용한 L-lactide 벌크중합 특성 연구)

  • Noh, Yee-Hyeon;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • The differences between single and mixed aluminium catalyst systems in the bulk polymerization of L-lactide were studied. $Al(O-i-Pr)_3$, TMA, TOA and TIBA were employed for the mixed-catalyst systems, and TIBA was chosen as a reference catalyst. For the $Al(O-i-Pr)_3$/TIBA catalyst system, the conversion of polymerization increased as the composition of $Al(O-i-Pr)_3$ in the mixed catalyst increased. The molecular weight of the resulting PLA reached to about 13000 g/mol, and the polydispersity index of the polymer from the $Al(O-i-Pr)_3$/TIBA catalyst was slightly increased than that of single catalyst. The higher molecular weight tail or shoulder was revealed in the GPC curve. The conversion of the TOA/TIBA catalyst system decreased as the composition of TOA in the mixed catalyst increased. The molecular weight of PLA prepared with TOA/TIBA catalysts increased up to 14000 g/mol. The Al compounds-mixed catalysts could produce a higher molecular weight tail or shoulder in the GPC curve, which may result in enhancement of mechanical properties of PLA.

Rheological and Thermal Properties of Acrylonitrile-Acrylamide Copolymers: Influence of Polymerization Temperature

  • Wu Xueping;Lu Chunxiang;Wu Gangping;Zhang Rui;Ling Licheng
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 2005
  • An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSC-TG) analysis, respectively. When the polymerization temperature increased from $41^{\circ}C\;to\;65^{\circ}C$, the molecular weight $(\bar{M}_w)$ of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from $18\%\;to\;63\%$, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and $\bar{M}_w$ was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from $30^{\circ}C\;to\;65^{\circ}C$. This suggests the dependence of viscosity upon $\bar{M}_w$ is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.

A Study on the Process in MMA/IPMI/Styrene Terpolymerization (MMA/IPMI/Styrene 삼원공중합 공정연구)

  • Park Jong-Kyoung;Yoon Sung-Cheol;Jin Jung-Il;Lee Chang-Jin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.326-331
    • /
    • 2006
  • MMA(methyl methacrylate)/IPMI(N-isopropyl maleimide) copolymers are one of the well known heat resistant materials for POF(plastic optical fiber). However, because of the large difference in the reactivity ratio between MMA and IPMI$(r_1/r_2=1.72:0.17)$, the compositional drift occurs during the polymerization process which causes the deterioration of the physical properties of these copolymers. In this paper, we report that the compositional drift of the copolymer could be reduced by the addition of styrene (St) which increased the reactivity of IPMI in the MMA/IPMI copolymerization system and conversion was also increased by 1.5 or 2 times. The MMA/IPMI/St terpolymer had higher refractive index than the MMA/IPMI copolymer which depended on the contents of sytrene.

Synthesis and Degradability of Aliphatic Copolyester and Aliphatic Copolyesteramide(2) (지방족 copolyester 및 copolyesteramide의 합성과 분해성(2))

  • Kim, Woo-Sik;Hyun, Seok-Hee;Jeon, Il-Ryon;Kang, Hye-Jung;Lee, Chi-Giu;Kim, Sung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.481-489
    • /
    • 1996
  • D,L-lactide (2-LA) was copolymerized with ${\beta}$-methyl-${\delta}$-valerolactone (MVL) using tetraphenyltin as a catalyst and the properties of the copolymers were investigated. The composition of the repeating unit of lactic acid in the copolymers was higher than that in the monomer feeds. The composition of the lactic acid unit in the copolymers decreased with increasing copolymerization time. The yield and the molecular weight of the copolymer increased with increasing 2-LA in the feed composition. These results suggest that the reactivity of 2-LA is larger than that of MVL. The number average molecular weight was in the range of 54,000 to 63,000 and the polydispersity index was in the range of 1.7 to 2.1. The copolymers did not show melting point, but glass transition temperature. The degradable tendency of the copolymers with lipase was almost equal to that of L-lactide-MVL copolymer.

  • PDF

Synthesis and Properties of Photocurable Epoxy Modified Acrylates Using Half-Ester Acrylates (하프-에스터 아크릴레이트를 이용한 광경화형 에폭시 변성 아크렐레이트의 합성과 물성)

  • 김동국;임진규;김우근;허정림
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2004
  • Various half-ester acrylates were prepared from anhydrides and 2-hydroxyethyl acrylate. Photocurable epoxy modified acrylates were prepared from synthesized half-ester acrylate and neopentylglycol diglycidylether. Physical properties such as hardness, yellowing, tensile strength and elongation were tested and compared as the structure of oligomer in cured-film differs. It was found that viscosity of neopentylglycol diglycidylether-hexahydrophthalic anhydride (NP-HA) was highest. Hardness and tensile strength of photocrosslinked neopentylglycol diglycidylether-hexahydrophthalic anhydride were better than those of other photocrosslinted epoxy acrylates. And 5% weight loss temperature of photocrosslinked neopentylglycol diglycidylether-hexahydrophthalic anhydride was higher than those of other photocrosslinked epoxy acrylates. Value of yellow index of photocrosslinked neopentylglycol diglycidyl ether-succinic anhydride (NP-SA) was lower than the other products.