Rheological and Thermal Properties of Acrylonitrile-Acrylamide Copolymers: Influence of Polymerization Temperature

  • Wu Xueping (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences) ;
  • Lu Chunxiang (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences) ;
  • Wu Gangping (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences) ;
  • Zhang Rui (College of Chemical Engineering, East China University of Science and Technology) ;
  • Ling Licheng (College of Chemical Engineering, East China University of Science and Technology)
  • Published : 2005.06.01

Abstract

An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSC-TG) analysis, respectively. When the polymerization temperature increased from $41^{\circ}C\;to\;65^{\circ}C$, the molecular weight $(\bar{M}_w)$ of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from $18\%\;to\;63\%$, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and $\bar{M}_w$ was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from $30^{\circ}C\;to\;65^{\circ}C$. This suggests the dependence of viscosity upon $\bar{M}_w$ is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.

Keywords

References

  1. J. Donnet and T. K. Wang, 'Carbon Fibers', Wiley-interscience, New York, 1998
  2. V. A. Bhanu, P. Rangarajan, K. Wiles, M. Sankarpandian, D. Godshall, T. E. Glass, A. K. Banthia, J. Yang, G. Wiles, D. Baird, and J. E. Mcgrath, Polymer, 43, 4841 (2002) https://doi.org/10.1016/S0032-3861(02)00330-0
  3. A. Ziabicki, 'Fundamentals of Fibre Formation', Pitman, Wiley, 1976
  4. D. Sawai, A. Yamane, H. Takahashi, T. Kanamoto, M. Ito, and S. Porter, J. Polym. Sci., Part A, 36, 629 (1998) https://doi.org/10.1002/(SICI)1099-0488(199803)36:4<629::AID-POLB9>3.0.CO;2-J
  5. D. D. Edie, Carbon, 36, 345 (1998) https://doi.org/10.1016/S0008-6223(97)00185-1
  6. J. Mittal, R. B. Mathur, and O. P. Bahl, Carbon, 35, 1713 (1997) https://doi.org/10.1016/S0008-6223(97)00126-7
  7. A. Gupta and I. R. Harrison, Carbon, 34, 1427 (1996) https://doi.org/10.1016/S0008-6223(96)00094-2
  8. Z. Bashir, Carbon, 29, 1081 (1991) https://doi.org/10.1016/0008-6223(91)90178-L
  9. J. Brandrup, J. R. Kirby, and L. H. Peeble, Macromolecules, 1, 53 (1968) https://doi.org/10.1021/ma60001a010
  10. M. M. Coleman and R. J. Petcavich, J. Polym. Sci., Polym. Phys. Ed., 16, 821 (1978) https://doi.org/10.1002/pol.1978.180160507
  11. W. S. Lyoo and H. D. Ghim, Eur. Polym. J., 35, 647 (1999) https://doi.org/10.1016/S0014-3057(98)00180-3
  12. K. Matsuzaki, T. Uryu, and M. Okada, J. Polym. Sci., 6, 1475 (1968)
  13. M. M. Coleman, G. T. Sivy, P. C. Painter, R. W. Snyder, and B. Gordon, Carbon, 21, 255 (1983) https://doi.org/10.1016/0008-6223(83)90089-1
  14. N. Grassie and R. McGuchan, Eur. Polym. J., 8, 257 (1972) https://doi.org/10.1016/0014-3057(72)90032-8
  15. S. Xiuren, Japan Patent, 5320266 (1993)
  16. H. Akira, Japan Patent, 5339813 (1993)
  17. Z. R. Pan, 'Macromolecule Chemistry', Chemical Industrial Press, Beijing, 1997
  18. M. Mukherjee, S. K. Chatterjee, and A. S. Brar, J. Appl. Polym. Sci., 73, 55 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990705)73:1<55::AID-APP7>3.0.CO;2-L
  19. F. M. Lin, CA, 17054D, 65 (1996)
  20. M. J. He, W. X. Chen, and X. X. Dong, 'Physics of Macromolecules', Fudan University Publisher, Shanghai, 2001
  21. M. Minagawa and T. Iwamatsu, J. Polym. Sci., 18, 481 (1980)
  22. X. P. Wu, Y. G. Yang, L. C. Ling, Y. H. Li, and F. He, New Carbon Materials, 18, 196 (2003)
  23. A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Appl. Polym., 59, 1819 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960321)59:12<1819::AID-APP2>3.0.CO;2-T