A Study on the Process in MMA/IPMI/Styrene Terpolymerization

MMA/IPMI/Styrene 삼원공중합 공정연구

  • Park Jong-Kyoung (Department of Chemistry, Korea University) ;
  • Yoon Sung-Cheol (Photonic & Electronic Materials Team, Korea Research Institute of Chemical Technology) ;
  • Jin Jung-Il (Department of Chemistry, Korea University) ;
  • Lee Chang-Jin (Photonic & Electronic Materials Team, Korea Research Institute of Chemical Technology)
  • 박종경 (고려대학교 화학과) ;
  • 윤성철 (한국화학연구원 광전기능성소재연구팀) ;
  • 진정일 (고려대학교 화학과) ;
  • 이창진 (한국화학연구원 광전기능성소재연구팀)
  • Published : 2006.07.01

Abstract

MMA(methyl methacrylate)/IPMI(N-isopropyl maleimide) copolymers are one of the well known heat resistant materials for POF(plastic optical fiber). However, because of the large difference in the reactivity ratio between MMA and IPMI$(r_1/r_2=1.72:0.17)$, the compositional drift occurs during the polymerization process which causes the deterioration of the physical properties of these copolymers. In this paper, we report that the compositional drift of the copolymer could be reduced by the addition of styrene (St) which increased the reactivity of IPMI in the MMA/IPMI copolymerization system and conversion was also increased by 1.5 or 2 times. The MMA/IPMI/St terpolymer had higher refractive index than the MMA/IPMI copolymer which depended on the contents of sytrene.

대표적인 고내열 POF(plastic optical fiber)의 재료로 사용되는 MMA(methyl methacrylate)/IPMI(N-isopropyl maleimide) 공중합체는 단량체 간의 반응성이 매우 차이가 나므로 $(r_1/r_2=1.72:0.17)$, 중합체의 조성분포가 불균일하게 되어 물성을 저하시키는 원인으로 작용한다. 본 논문에서는 MMA/IPMI 공중합에 스티렌을 도입하여, IPMI의 반응성을 증가시켜 중합체의 조성 분포를 좀 더 균일하게 개선하였으며, 전환율도 약 $1.5{\sim}2$배 정도로 증가시키는 결과를 얻을 수 있었다. 합성된 MMA/IPMI/St 삼원공중합체의 경우 굴절률은 MMA/IPMI 공중합체보다 증가하였으며 이는 주로 스티렌의 함량과 관련되는 것으로 나타났다.

Keywords

References

  1. T. H. Rhee and J. H. Kim, Polymer Sci. & Tech., 7, 179 (1996)
  2. M. Y. Jin, K. H. Park, and H. K. Jung, Polymer Sci. & Tech., 13, 180 (2002)
  3. W. Daum, Proceeding of 27th European Conference on Optical Communication, 70 (2001)
  4. Y. Tomoyoshi, Plastic Optical Fiber, Kouritsu Press, JP, p.78 (1997)
  5. R. Madan, A. Srivastava, R. A. Anand, and I. K. Varma, Prog. Polym. Sci., 23, 663 (1998)
  6. T. Kodaira, Prog. Polym. Sci., 25, 627 (2000) https://doi.org/10.1016/S0079-6700(00)00016-2
  7. H. Suganuma, S. Taneichi, H. Kobayashi, and T. Matsunaga, US Patent 4810055 (1989)
  8. H. Suganuma, S. Taneichi, H. Kobayashi, and T. Matsunaga, JP 2057355 (1996)
  9. I. Takase, S. Fukushima, H. Aida, and M. Yamada, Kobunshi Kagaku, 30, 632 (1973) https://doi.org/10.1295/koron1944.30.632
  10. G.-Q. Chen, Z.-Q. Wu, J.-R. Wu, Z.-C. Li, and F.-M. Li, Macromolecules, 33, 232 (2000) https://doi.org/10.1021/ma991047b
  11. R. H. Wiley and E. E. Sale, J. Polym. Sci., 42, 479 (1960) https://doi.org/10.1002/pol.1960.1204214015
  12. U. Kenichi, M. Tomomi, and Y. Minoru, Japanese Patent JP 2001-233919 (2001)
  13. K. Ishizu, C. Takashimizu, T. Shibuya, and S. Uchida, Polym. Int., 52, 1010 (2003) https://doi.org/10.1002/pi.1187
  14. Y. Kita, T. Kashitani, K. Kishino, and K. Nakagawa, Nippon Kagaku kaishi, 12, 971 (1995)
  15. Y. Kita, K. Kishino, and K. Nakagawa, J. Appl. Polym.Sci., 63, 1055 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970222)63:8<1055::AID-APP12>3.0.CO;2-5