• Title/Summary/Keyword: Higher tube voltage

Search Result 102, Processing Time 0.023 seconds

Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits (원통형 다공성 유리막을 이용한 전기삼투 펌프의 연구)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, we demonstrated the operation of an electroosmotic pump with cylindrical porous glass frits and evaluated its long-term operation. The performance of this electroosmotic pump was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM borate buffer. The maximum flow rate, current, and pressure linearly increase with voltage. The maximum flow rate is normalized by the pumping area and voltage for comparison of the performance between the electroosmotic pumps with cylindrical and planar frits. The normalized maximum flow rate of the cylindrical-type pump is higher than that of the planar-type pump because of their different geometries. The cylindrical-type electroosmotic pump has five times better performance than the planartype electroosmotic pump for a given pump package volume. It can operate stably for over 3 hours.

A Study on Conductivity Characteristics of X-ray Irradiated Insulating Oil (X선조사(線照射)에 의한 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Duck-Chool;Chung, Yon-Tack
    • Journal of radiological science and technology
    • /
    • v.10 no.1
    • /
    • pp.75-83
    • /
    • 1987
  • The insulating oil used for X-ray tube housing were degraded by X-ray irrdiation, high temperature and high anode voltage for normal operation. This study was measured the conduction current-X-ray dose, heating degradation, time, temperature and electric field characteristics and the dependense of electrode materials and gap length in the X-ray irradiatied insulating oil under of D.C voltage. The obtained results can be summarized as following. 1. The conduction current of X-ray irradiated insulating oil is more about $2.5{\sim}3$ times as large as than that of non x-ray irradiated, and is become saturation phenomena after some degree. 2. The conduction current of many times heating x-ray irradiated insulating oil is more than that of a few times heating. 3. The higher temperature x-ray irradiated insulating oil is increased, the more conduction current, and that is increased about ten times as large as when it's temperatures is increased to $80^{\circ}C\;at\;30^{\circ}C$, twenty five times at $100^{\circ}C$. 4. The dependence of electrode materials is appeared at the low electric field, and the small gap length with Fe > Cu > Al. 5. The low electric field than 3000 v/cm is appeared Ohm's law region, and the high is become saturation region at the I-E characteristics. 6. The larger gap length is become, the more conduction current is increased at the same electric field.

  • PDF

Study on Noise Reduction of Plasma Display Panel (플라즈마 디스플레이의 소음 저감 연구)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.693-698
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operates on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. For this discharge, both high voltage and currents are needed and cause an acoustic noise. We investigated the noise characteristics connected with both a electromagnetic elements from SMPS to panel through X, Y and logic board, and a mechanical elements form panel to case through transfer path which related with vibration and heat. To reduce the noise of PDP, a discharge pulse memory design related with both higher brightness and lower power consumption is important and mechanical characteristics connected with dissipation process of both heat and vibration generated by panel discharge must be investigated.

  • PDF

Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography

  • Kim, Sang Youn;Cho, Jeong Yeon;Lee, Joongyub;Hwang, Sung Il;Moon, Min Hoan;Lee, Eun Ju;Hong, Seong Sook;Kim, Chan Kyo;Kim, Kyeong Ah;Park, Sung Bin;Sung, Deuk Jae;Kim, Yongsoo;Kim, You Me;Jung, Sung Il;Rha, Sung Eun;Kim, Dong Won;Lee, Hyun;Shim, Youngsup;Hwang, Inpyeong;Woo, Sungmin;Choi, Hyuck Jae
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1119-1129
    • /
    • 2018
  • Objective: To compare the image quality of low-tube-voltage and low-iodine-concentration-contrast-medium (LVLC) computed tomography urography (CTU) with iterative reconstruction (IR) with that of conventional CTU. Materials and Methods: This prospective, multi-institutional, randomized controlled trial was performed at 16 hospitals using CT scanners from various vendors. Patients were randomly assigned to the following groups: 1) the LVLC-CTU (80 kVp and 240 mgI/mL) with IR group and 2) the conventional CTU (120 kVp and 350 mgI/mL) with filtered-back projection group. The overall diagnostic acceptability, sharpness, and noise were assessed. Additionally, the mean attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) in the urinary tract were evaluated. Results: The study included 299 patients (LVLC-CTU group: 150 patients; conventional CTU group: 149 patients). The LVLC-CTU group had a significantly lower effective radiation dose ($5.73{\pm}4.04$ vs. $8.43{\pm}4.38mSv$) compared to the conventional CTU group. LVLC-CTU showed at least standard diagnostic acceptability (score ${\geq}3$), but it was non-inferior when compared to conventional CTU. The mean attenuation value, mean SNR, CNR, and FOM in all pre-defined segments of the urinary tract were significantly higher in the LVLC-CTU group than in the conventional CTU group. Conclusion: The diagnostic acceptability and quantitative image quality of LVLC-CTU with IR are not inferior to those of conventional CTU. Additionally, LVLC-CTU with IR is beneficial because both radiation exposure and total iodine load are reduced.

Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality (인터벤션 시 방사선조사 조건에 따른 선량감소 : 면적선량과 영상화질 변화를 중심으로)

  • Hwang, Jun-Ho;Jung, Ku-Min;Kim, Hyun-Soo;Kang, Byung-Sam;Lee, Kyung-Bae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.393-400
    • /
    • 2017
  • The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from $1066mGycm^2$ to $6160mGycm^2$ to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

Image and Exposure Dose in Accordance with Radiation Quality on Plain Chest Radiography (흉부촬영(胸部撮影)에서 증감지(增感紙)-필름계의 선질변화(線質變化)에 따른 감도(感度)와 화질에 관(關)한 연구(硏究))

  • Kim, Jung-Min;Kim, Dong-Huan;Hayashi, Taro;Ishida, Yuji;Maeda, Mika;Sakura, Tatsuya
    • Journal of radiological science and technology
    • /
    • v.15 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • Routine chest radiography is generally imaged by high voltage technique but some radiological technologists use low voltage for imaging. High voltage is usually said between $120\;kV{\sim}140\;kV$. Some RTs like using heavy filtration but others seldom like using it. However which is better for use calcium tungustate film screen system or ortho system and high contrast film or wide latitude c-type film for the exculusive use of chest radiography. We could not make a decision which is ideal method for use. In my opinion any method is not always exellent for chest radiography. In my experiments that I had at Kaken hospital in Japan last year I expect to keep the balance between image quality and diagnostic range and to reduce radiation dose for patients. My experiments are as follows. 1. We have looked into system characteristics(speed and contrast) in accordance with kVp($80{\sim}140$) and added filter($no{\sim}1/16\;VL$) in three screen film systems(BX3+CRONEX4, SRO750+MGH, SRO750+MGL). 2. We have looked into skin dose and film dose with same D=1.8 lung field density in accordance with kVp($80{\sim}140$) and added filter($no{\sim}1/16\;VL$) in three screen film systems. 3. We have compared with the evaluation between correlation of physical image quality(MTF) and optical diagnostic capability. Result are follows. 1. Speed of BX3+CRONEX4 became higher in accodance with kVp and thickness of filter but speed of ortho system was not as like regular system. Thicker filter diminished the speed over 100 kV range in SRO750+MGL. In case of SRO750+MGH speed of 1/16VL filter was looked into lower than speed of 1/4VL filter. Sensitivity of ortho system depends on tube voltage and added filter. 2. Skin dose has been detected $225\;{\mu}Gy{\sim}66\;{\mu}Gy$ in BX3+CRONEX4 from 80 kV, no filter to 140 kV, 1/16VL filter. SRO750+MGH could reduce the patient dose $1/2{\sim}1/3$ level in comparison to that of BX3+CRONEX4. 3. The higher kV was the worse MTF became the thicker filter was the worse MTF became too. MTF of BX3+CRONEX4 was detected better than MTF of SRO750+MGH but SRO750+MGH's optical detectability of small lesion in lung field came out better than that of BX3+CRONEX4. Conclusion Recently routine chest radiography is generally imaged by high voltage but it seems to be there are some questions in using of film screen combination. In high voltage chest radiography the subject contrast will come down that means latitude become wider. In this case if we select the low contrast film screen system(C or L type) the film contrast will fall down extremly and detectability of small lesion will be deteriorated. Wide latitude C, L type film has a merit of high detectability on mediastinum. Furthermore high contrast film screen system has the advantage to keep the high contrast in low density region as like mediastinum and heart shadow. Therefore in low subject contrast high voltage chest radiography we would rather choose the high contrast film screen system(H type) I think. From a view point of patient dose detectability of mediastinum and lung field. The optimum technical facter was found out 120 kV, 1/16VL filter : BX3+CRONEX4, 140 kV, 1/4VL filter : SRO750+MGH, 100 kV, 1/4VL filter : SRO750+MGL.

  • PDF

Assessment of Spatial Dose Distribution in the Diagnostic Imaging Laboratory by Monte Carlo Simulation (몬테카를로 전산해석에 의한 X선 실습실의 공간선량분포 평가)

  • Cho, Yun-Hyeong;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.423-428
    • /
    • 2017
  • In this study, the calculation of the effective spatial dose distribution of the diagnostic imaging laboratory of K university was performed by the Monte Carlo simulation. The radiation generator has a maximum tube voltage of 150 kVp and a maximum current of 700 mA. Using the results, we compared the spatial effective dose distributions of diagnostic imaging laboratory when the shielding door was closed and opened. In conclusion, it was found that the effective dose in the operating room of the diagnostic imaging laboratory does not exceed the annual dose limit (6 mSv/y) of the student (occasional visitor) even when the door is opened. However, since the effective dose when the door is open is about 16 times higher in front of the lead glass window and about 3,000 times higher in front of the doorway than the case when the door is closed, closing the shielding door at the time of the practical exercising reduces unnecessary radiation exposure by great extent.

Evaluation for Optimization of CT Dose Reduction Methods in PET/CT (PET/CT 검사 시 CT 피폭선량 감소 방법들의 최적화 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Purpose Various methods for reducing radiation exposure have been continuously being developed. The aim of this study is to evaluate effectiveness of dose reduction, image quality and PET SUV changes by applying combination of automatic exposure dose(AEC), automated dose-optimized selection of X-ray tube voltage(CAREkV) and sinogram affirmed iterative reconstruction(SAFIRE) which can be controled by user. Materials and Methods Torso, AAPM CT performance and IEC body phantom images were acquired using biograph mCT64, (Siemens, Germany) PET/CT scanner. Standard CT condition was 120 kV, 40 mAs. Radiation exposure and noise were evaluated by applying AEC, CAREkV(120 kV, 40 mAs) and SAFIRE(120 kV, 25 mAs) with torso phantom compare to standard CT condition. And torso, AAPM and IEC phantom images were acquired with combination of 3 methods in condition of 120 kV, 25 mAs to evaluate radiation exposure, noise, spatial resolution and SUV changes. Results When applying AEC, CTDIvol and DLP were decreased by 50.52% and 50.62% compare to images which is not applying AEC. mAs was increased by 61.5% to compensate image quality according to decreasing 20 kV when applying CAREkV. However, CTDIvol and DLP were decreased by 6.2% and 5.5%. When reference mAs was the lower and strength was the higher, reduction of radiation exposure rate was the bigger. Mean SD and DLP were decreased by 2.2% and 38% when applying SAFIRE even though mAs was decreased by 37.5%(from 40 mAs to 25 mAs). Combination of 3 methods test, SD decreased by 5.17% and there was no significant differences in spatial resolution. And mean SD and DLP were decreased by 6.7% and 36.9% compare to 120 kV, 40 mAs with AEC. For SUV test, there was no statistical differences(P>0.05). Conclusion Combination of 3 methods shows dose reduction effect without degrading image quality and SUV changes. To reduce radiation exposure in PET/CT study, continuous effort is needed by optimizing various dose reduction methods.

  • PDF

A Study on Dose Reduction in Infant Skull Radiography (유아 두개골 방사선촬영에서 피폭선량 감쇄에 관한 연구)

  • Ahn, Byoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.387-392
    • /
    • 2017
  • When an infant has visited a hospital due to skull fracture, the rupture of a blood vessel, or skin wounds on the head resulted from an incident, accident, traffic accident, or disease, he/she becomes to undergo anterior/posterior and lateral skull imaging, which is a head test at the department of radiology. In the head test, if the adult skull imaging grid is applied to the imaging, the secondary radiation will be removed to enhance the contrast of the image. However, among the radiation exposure conditions, the tube voltage should be enhanced by 8~10 kVp leading to an increase in the patient exposure. The present study was conducted under assumption that if the same images can be obtained from infant skull imaging without using the skull imaging grid, the exposure dose will be reduced and the artifacts due to grid cut off can be prevented. The researcher measured the radiation dosage using a radiation meter and conducted the subjective evaluation (ROC, receiver operating characteristic) among medical image evaluation methods. Based on the results, when the images were taken without using the grid, the exposure dose was reduced by 0.019 mGy in the anterior/posterior imaging and by 0.02 mGy in the lateral imaging and the image evaluation score was higher by 4 points. In conclusion, if the images of the skulls of infants that visited the hospital are taken with out using the grid, the exposure dose can be reduced, the image artifacts due to grid cut off can be prevented, and the lifespan of the X-ray tube will be extended.

Quality of Image and Exposure Dose According to kVp, mA and Iterative Reconstruction in Computed Tomography (전산화단층촬영에서 관전압과 관전류, 통계적 반복재구성법에 따른 화질과 피폭선량)

  • Cha, Sang-Young;Park, Jae-Yoon;Lee, Yong-Ki;Kim, Jeon-Hun;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.385-392
    • /
    • 2017
  • The purpose of this study is to investigate the image quality and exposure dose according to kVp and mAs in CT and to confirm improvement in image quality according to None IR and IR(Iterative Reconstruction) levels. Measurement results of image quality using Image J, HU(Hounsfield units) and BN(Background Noise) are decreased, while SNR(Signal to Noise Ratio) and $CTDI_{vol}$(CT dose index volume) are increased as the kVp increases and there was no change of BHU(Background Hounsfield units). BN was reduced due to increased kVp, while SNR and $CTDI_{vol}$ were increased. Also, the higher IR stage, the lower BN, SI(Signal Intensity) and HU while SNR was improved by about 10~60%. Based on this, when applying IR for clinical applications, it is necessary to finely adjust kVp and mA with a phased approach.