• Title/Summary/Keyword: High-velocity low-amplitude

Search Result 37, Processing Time 0.022 seconds

Korea Offshore Seismic Data Processing for Gas Detection (천연 가스 탐지를 위한 국내 대륙붕 탄성파자료 처리)

  • Jang, Seong-Hyung;Sunwoo, Don;Yang, Dong-Woo;Suh, Sang-Young;Chung, Bu-Heung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.115-123
    • /
    • 2001
  • The bright spot is an indicator for natural gas on seismic stack sections, but it is also shown on layers where the acoustic impedance contrast is large. In order to distinguish sharply between gas and impedance contrast we need additional detailed data processing such as velocity analysis, AVO analysis and seismic complex analysis including measures of seismic amplitude, frequency, and phase. In this study, we performed detailed velocity analysis, complex analysis and DHI (Direct Hydrocarbon Indicator) analysis which is the result of amplitude variation according to the incident angles. The seismic complex analysis gives us the geological information which depends on geophysical properties at the interest layer. For the complex analysis, we computed several seismic attributes such as the instantaneous amplitude, the first and the second derivatives of the instantaneous amplitude, the instantaneous phase, the instantaneous frequency and weighted average instantaneous frequency. Then we applied these analysis techniques to a seismic data of Korea offshore which had been logged. From the result of this data analysis, it could be said that high possibility area for gas layer detection has amplitude anomalies in the instantaneous amplitude, the instantaneous frequency and the DHI section resulting from the AVO analysis. If there are not any other anomalies in detailed data processing, it will have low possibility for gas layer detection.

  • PDF

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

Analysis of Biomechanical Characteristics of Therapist's Ground Reaction and Contact Hand Force and Time According to Table Height During Spinal Manipulation

  • Jejeong Lee;Yongwoo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • Objective: This study aimed to analyze the effects and characteristics of the height of the treatment table on the force and time of ground reaction (GR) and contact hand (CH) generated from the therapist's feet to generate thrust during spinal manipulation (SM). Design: A cross-sectional survey study Methods: Thirty-six healthy subjects were recruited. SM was performed on the ilium using a knee-high table, where the therapist felt it was easy to control the subject's posture and body shape and comfortable to generate force, as well as a relatively high thigh-high table. The force and time generated by the therapist's GR and CH were simultaneously measured through a force plate. Results: As a result, there was a significant difference in peak force and rundown force at the therapist's GR according to the table height (p < 0.05). In the therapist's CH, there was a significant difference between PreMin (preload minimum) force and peak force (p < 0.05), and there was a significant difference between the time from PreMin to peak and the time of the entire section (p < 0.05). Conclusions: As a result, the generation of increased CH force and faster thrust duration were confirmed by mobilizing the reduced GR force of the therapist to generate thrust than the relatively high table on the knee-high table.

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

DYNAMIC PROPERTIES OF WASTE FILL SUBJECTED TO DYNAMIC COMPACTION (쓰레기 매립지반에서의 진동 동다짐 특성)

  • 송정락
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.83-116
    • /
    • 1993
  • This article analyzed the dynamic compaction incuced vibration of man made waste landfill. General dynamic properties and compaction-condition-related dynamic properties were analyzed. from the results, it was turned out that the shear modulus G=17496-58320 t/m2, dannpln ratio D=14~58%, dominant frequency f=6-14Hz. Also, it was turned out that the propagation velocitis of low amplitude shear wave and compressive wave were increased as the number of impact increased, the relation between peak particle velocity, and impact distance was wpp=5.08.[D/r E]-1.4, the peak particle velocity was high at the lower part of the waste fill layer and the range of dynamically improved area was about 6-10m.

  • PDF

Case study of application on manual therapy of knee pain cause of Sacroiliac joint dysfunction (천장관절기능부전으로 인해 발생된 무릎 통증환자의 도수치료 적용사례)

  • Choi, Sung-Hwan;Park, Huyn-Sik;Shin, Young-Il
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.61-65
    • /
    • 2008
  • Purpose : The purpose of the study was to determine Effects of application on manual therapy of knee pain cause of Sacroiliac joint dysfunction. Methods : The patient with knee pain was 59years female. Muscle Energy Techniques, high-velocity, low-amplitude and modality(Hot pack, ultrasound, TENS) using during one month. Results : The patient has improve pain, muscle strength and function.

  • PDF

Vortex-Induced Vibration of Flexible Cylinders Having Different Mass Ratios (원통형 부재의 질량비에 따른 와유기진동 특성연구)

  • Tae-Young Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 1991
  • A series of experiments were performed to see the dependence of the response characteristics of vortex-induced vibration of flexible cylinders on mass rations for marine applications. Experiments were conducted in the $60cm{\times}60cm$ test section of the cavitation tunnel at the Korea Research Institute of Ships and Ocean Engineering using 5 test rods of 60cm length and 6mm diameter with different mass ratios. It was confirmed quantitatively from the experiments that the low mass ratio cylinders have much broader flow velocity range of large amplitude vibrations than high mass ratio ones.

  • PDF

Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids (고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가)

  • Lee, Dooyoung;Jung, Jinseung;Kim, Youngdae;Bang, Jiye
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

COMPUTATION OF AERODYNAMIC SOUNDS AT LOW MACH NUMBERS USING FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

  • Kang H. K;Tsutahara M;Shikata K;Kim E. R;Kim Y. T;Lee Y. H
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r /sup -1/2/,r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at high incidence and low Reynolds number are also investigate.

Numerical Simulation of Aeroacoustic Noise at Low Mach Number Flows by Using the Finite Difference Lattice Boltzmann Method (차분래티스 볼츠만 법을 이용한 저Mach수 흐름에서의 유동소음해석)

  • Eun-Ra Kim;Jeong-Hwan Kim;Ho-Keun Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.717-727
    • /
    • 2004
  • In this study, we simulate the aerodynamic sounds generated by a two-dimensional circular cylinder in a uniform flow are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives. and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the Pressure fluctuation around a circular cylinder The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow For the downstream. on the other hand. it quickly Propagates. It is also apparent that the amplitude of sound Pressure is Proportional to $r^{-1/2}$, r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence furthermore a 2D computation of the tone noise radiated by a NACA0012 with a blunt trailing edge at high incidence and low Reynolds number is also investigated.