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COMPUTATION OF AERODYNAMIC SOUNDS
AT LOW MACH NUMBERS USING FINITE DIFFERENCE
LATTICE BOLTZMANN METHOD

H. K. Kangl*, M. Tsutahara®, K. Shikata’, E. R. Kim®, Y. T. Kim* and Y. H. Le¢’

Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at
Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate
up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta
scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with
the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular
cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased
upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It
is also apparent that the amplitude of sound pressure is proportional to r ' r being the distance from the
center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D
computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at

high incidence and low Reynolds number are also investigate.
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1. INTRODUCTION

With the increase of speed of transport vehicles
like airplane, automobiles, and trains in recent years,
noise has become a large environmental problem.
There are two kinds of noise: vibration noise
created by the vibration of object, and aerodynamic
noise produced by the unsteady motion of fluid.
The energy of sound due to the object vibration is
proportional to 0(10%) of the representative
velocity while the aerodynamic noise is
proportional to O(10°-10®). Understanding the
aerodynamic noise by analyzing its mechanism is
therefore difficult.

In the numerical research of the aerodynamic
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sound, it can be possible to analyze the information
of the detailed flow field, which is not obtained in
the experiments, by directly solving the
compressible Navier-Stokes equation. However, in
studying the aerodynamic sound by the numerical
method, a number of things are necessary: a highly
accurate scheme to realize the sound pressure
(O(10™) against the static pressure; a wide
calculation area to obtain far away sound pressure
field; and removal of the numerical reflection at the
boundary.

The flow around a circular cylinder[1,2] or an
airfoil[3] has been studied experimentally and
numerically for quite a while because it is one of
the abundant phenomena of the fundamental fluid
mechanics. Yet, in spite of its simplicity, a lot of
unsolved problems still exist. One of them is the
generation mechanism of acoustic waves by the
flow around the cylinder. This has also been studied
experimentally and numerically to some extent. The
numerical analyses has been done in the
conventional way that a vorticity dominant near
field is simulated first and then an acoustic far field
is obtained using approximated equations derived
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from the acoustic analogy.[4] So far most of the
computational work on the sound generation due to
flow past a circular cylinder has been done using
the hybrid method[5], acoustic/viscous splitting
methods[6,7] and the direct numerical simulation
(DNS)[8,9], but in this field, the studies using
lattice boltzmann method (LBM)[10] are very few.

In the present study, using finite difference lattice
Boltzmann method (FDLBM) over the entire region
from the near to far fields, the generation and
propagation mechanism of the acoustic waves
produced by a turbulent wake of a circular cylinder
in a uniform flow at low Reynolds number is
computed. The predicted sound spectra with the
vortex/flow dynamics is clarified and the effect of
the Mach number using the sound velocity is also
examined. In order to see the characteristic of the
lattice dependence, besides, 2D computations of the
tone noise radiated by a square cylinder and an
airfoil (NACAO0012) with a blunt trailing edge at
high incidence and low Reynolds number are also
investigated.

In the following analysis, let L be a characteristic
length, U a characteristic flow speed and ¢ a
characteristic particle speed which is the order of
sound speed.

2. ANALYSIS

There has been rapid development the lattice gas
method (LGM or lattice gas cellular automaton
LGCA)[11] and the LBM for simulating fluid
dynamics problems. In traditional numerical
methods, the macroscopic variables (velocity and
density) are obtained by solving the Navier-Stokes
equations. The LBM solves the microscopic kinetic
equation for particle distribution function from
which the macroscopic quantities (velocity and
density) are obtained through the movement and the
collision of particles. Some books and reviews
presented a lot of studies in this field.[12-14]

The presently popular method uses regularly
spaced lattices and cannot handle curved
boundaries with desirable flexibility. To circumvent
such difficulties, the FDLBM][15,16] in curvilinear
coordinates is explored using body-fitted
coordinates with non-uniform grids.[17] It become
possible and easy to simulate the complicated
object shapes, and the application to various flow
fields is attained. This method has high flexibility

for coordinate system selection and is often the
choice among various different schemes.

2.1 DISCRETIZED LATTICE BGK MODEL

The Boltzmann equation governing the velocity
distribution function f; may be written, with a single
relaxation time @ , as:

Bt e V= - - ) 1)

In this equation, the real number f; is the
normalized number of particles at each lattice node
and time ¢, moving in direction . The microscopic
dynamic associated with Eq.(1) can be viewed as a
two-step process of movement and collision. In the
collision step, the distribution functions at each site
relax toward a state of local equilibrium. The form
of RHS term, given in Eq.(l), represents a
relaxation of the distribution towards its
equilibrium value and recovers the nonlinear form
of the fluid, ensuring that the fully nonlinear
Navier-Stokes equation is satisfied. The equilibrium
distribution functions f* depends on the fluid

density p, velocity u, and internal energy e, at

each site which can be calculated from the
distribution functions as:

p= Zfi )
pu=2cif; 3)
and
pezzlczf —lpu2 “)
T2 2

Up to O(u’), we assume that the equilibrium
distribution function is expressed as:

£ = Fp[l - 2Bc, u, +2B*(c,u, )+ Bu’ )

i o

- %Ba(c. u,)-2B%, u,u’]

where the Greek subscripts represent vector
components. The moving particles are allowed to

move with five kinds of speed, ¢, 2c, 3c, V2
and 2+2c, and the particles are 21 kinds, as shown
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Fig. 1 A compressible lattice Boltzmann model (D2Q21).
The m=1 indicates the particle which moves in the
orthogonal direction and m=2 indicates the particle
which moves in the diagonal direction. The k
represents the speed of particle which moves in the
nearest neighboring lattice

in Fig. 1. The functions F and B, respectively,
are determined by:

F =1+ 52( 1724+ 352+£) (6)
4Bc® \96B°c* 48Bc* 45
Fos - 8]5’1c2 (16;’;& ’ 24§c2 ¥ 3] @
Fos = 161;02 (161?.52c4 * 242;c2 +§j ®
Fio-a =- 24]13c2 (16}312c4 ’ SBIC2 +%) )
Fga7 = ﬁ[ﬁ‘;—z + —:;') (10)
Fo, = —l—sﬁ(chz +3) (11
|
B (12)
The models for compressible fluids are

sometimes unstable in calculation because the
-distribution function becomes a negative value.
Using the finite difference, it stabilizes the
calculation considerably. For this purpose, this
paper employs the discretized BGK equation (1).
This equation is shown to lead the Navier-Stokes
equations by the Chapman-Enskog expansion, and
the term (®-1/2) in transfer coefficient changes

into ®. The relationship between the kinematic
viscosity and relaxation time factor becomes:

Vzépe@ (13)

In this equation, D is the characteristic dimension
and the value of D is 2 for two-dimensional case.
For high Reynolds number flows which are very
important in engineering fields, v<<1 must be
satisfied. If Euler's first order forward difference
scheme is used for time integral, the equation is
transformed as:

i p +A{—c,a%—é( e ﬁeq):| (14)

where At is the time increment. In Eq. (14), the
condition of stability for the collision term must be
satisfied At/®<2.0 , which states that the
distribution function approaches its equilibrium
state by every collision. Relations between v and
At/® lead that, for high Reynolds number flows,
the time increment chosen must be very small and
the calculation time will be very long. Therefore, an
equation in which the third term is added to the
discretized BGK equation (Eq. (1)) is transformed:

Ofi . Ofi 4. NS~ S | e (15)
a1 ox, Aq”axa[ ® J =)
in which A(>0) is a constant. Then the
relationship is changed as follows.
v:gpe(<b—A) (16)
D

By conducting such conversion, it is possible to
modify the relationship between the coefficient of
the kinematic viscosity and the single relaxation
coefficient ®-v to ®—A-v in FDLBM.
Therefore, the single relaxation coefficient @
becomes @ — A in the flow of high Reynolds
number, and the transformed model of FDLBM
makes it possible to calculate with the fixed value
of ® which is taken in high Reynolds number
flows. Furthermore, it becomes possible that the
calculation of At can easily or stably simulate up
to large value, while At/®=2.0is an upper limit
for the collision term in the conventional FDLBM
model.
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The macroscopic equations can be derived from
the lattice Boltzmann equations by conducting a
Chapman-Enskog expansion in the time and space
derivatives such that

i——).&‘i+82—a— an
ot ot ot,

9 ,., 0 (18)
ox, Ox,

and the distribution function is expanded in powers
of ¢ as

f, = 94+ 6f 0 1 2P 4. (19)

where the dimensionless number ¢ 1s of the same
order as the Knudsen number. Substituting the
expression for the equilibrium distribution
functions of Eq. (5), and the Chapman-Enskog
expansions of Egs. (17), (18) and (19), the Navier-

Stokes equations are obtained as

P U (20)
& axy,

apua +apu‘1uﬁ —

ot ax, 1)

_.a_p_f_i %+% +ﬁ_l au_ﬂ
ox, Oxg|\Ox, 0Ox,) Ox, |ox,

6 (1, o (1, p
—plzu’te|+—| = +5
6tp[2u e) Ox, (ZM e P a
22)
a * 6@ a 514,1 aup
=—k — [+ |wy +—
ox, ox, ) Ox, Ox, o,
17
+ i ﬁ“ua &
ox, Oxy
Here the details are skipped, but, from the above
equations, the pressure, the second viscosity, the
conductivity of internal energy and the speed of

sound can be wirrten in non-dimensional forms by
using characteristic quantities L, ¢ and p:

2
-2 (23)
p=] e

@ (b)

Fig. 2 Schematic diagram of the flow field model (a) and
computational mesh for flow past a circular
cylinder (b). For clarity, only one in every four
mesh lines for the radial direction is plotted.

ﬂ,=—§(¢>—1‘1) 24)
K= 2(?; D oe(@—A), (25)

¢ = /@DZ_Z)e (26)

3. NUMERICAL METHOD

In this section, we consider a schematic diagram
of the flow around a circular cylinder in a 2D
uniform flow (Fig. 2(a)) using the finite difference
lattice Boltzmann model in Eq.(15) described in
section 2. In the Cartesian coordinate (x,y), the
uniform flow of the velocity Uy parallel to the x
direction is considered. Normalized by the static
sound velocity cp, the streamwise velocity is

prescribed by the M =U/c, =U/y2e, where m

is the Mach number. Furthermore, the cylinder of
the diameter L is fixed at the origin. The polar
coordinates (1,6) are also used, where the azimuthal
angle 0 is defined from downstream in the
counterclockwise direction. The Reynolds number,
defined as RE =UL/v, where v is the kinematic
viscosity, is equal to 150.

For the entire field from near to far acoustic field,
computations are carried out on a O-grid
configuration shown in Fig. 2(b), where only one-
quarter of the mesh lines for the radial direction are
plotted for clarity. A typical grid system in the case
of Re=150 is constructed as follows: the number of
the grid points results in rx0=201(in the radial
direction) x121 (in the azimuthal direction); the
time increment At is 0.02; and the examined
Mach numbers use the sound velocity by changing



12/ JOURNAL OF COMPUTATIONAL FLUIDS ENGINEERING

KANG, TSUTAHARA, SHIKATA, KiM, KiM AND LEE

%] : T

M=0. p
- - -~ M=0.25

11

[E—— M=0.3
DNS(M=0.2) 4

05 °

L 1 L
[ 90 180

Fig. 3 Time average pressure ¢, at M=0.2, 0.25, 0.3 and
DNS result(Inoue, 2002) at 0 <9 <=, Re=150.

the internal energy e. All the calculations are in
two-dimension and use 2D21V  model.
Computations  start with uniform velocity
u,(t=0)=(U,0) everywhere.

For spatial derivatives, a third-order-accurate up-
wind scheme (second-order-accurate at the
boundary) is used, and a second-order-accurate
Runge-Kutta scheme is used fortime integration.
Adiabatic and no-slip conditions are adopted on the
cylinder surface. Along the O-grid shaped outer
boundary, the velocities are set at the freestream
values, u;,=(U,0) . Because the boundary is

sufficiently far away from the circular cylinder, the
numerical wave reflections from the boundary are
removed.[18,19] The spacing in the surface region
is prescribed to be fine enough to analyze the
boundary layer on the cylinder surface. The
acquired data is set forth sufficiently after the effect
of the initial perturbation become negligible
(t>100).

4. NUMERICAL SIMULATIONS

4.1 FLOW-INDUCED NOISE

A flow past a circular cylinder at Re=150 is
considered for validation of the modified FDLBM
model (Eq. (15)), in which the cylindrical
coordinated system is employed. The numerical
results when the Karman vortex street was fully
developed are shown in Figs. 3 to 8. Force acting
on the cylinder surface as a function of the
azimuthal angle 8 is presented in Fig. 3 for three
different Mach numbers (M=0.2, 0.25 and 0.3), and
compared with that of DNS result[9]. Pressure
coefficient C, is the time averaged pressure on
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Fig. 4 Lift force acting on the cylinder surface (a) and
time history of the sound pressure (b). M=0.2,
Re=150. Arrows indicate T=127. L=50; solid line
0 =90°; blue line 9=-90°.

the cylinder surface normalized by the value at the
stagnation point § =0°, and defined as:

- PPy @27
P 1/2pU°

in which p, denotes the ambient pressure. From the
figure, it shows that the coefficient ¢, is not affected
significantly by the Mach number. A comparison of
the pressure coefficient at 0<0<m for M=0.2 also
indicates that FDLBM is compatible with DNS.

In the near-field flow structure, lift force Cp
acting on the cylinder surface and pressure
variations are plotted in Fig. 4 for the case of
M=0.2(e;=0.5). Here, the non-dimensional pressure
fluctuation Ap is defined as:

Ap=(p—po)/Po (28)

Time history of sound pressure at the point d=50
and 6=190° is shown in Fig. 4(b). By comparing
with the lift coefficient C;, in Fig. 4(a), during the
period T(=Ut/L)=120~150, it can be seen that the
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Fig. 5 Instantaneous streamlines in the vicinity of a
circular cylinder at T=132.

period of ¢ oscillates equal to the period of Ap.
And positive peaks of C;, also coincide with the
positive and negative peaks of Apg-+oe. In this case,
the Strouhal number is defined by S,=fL/U where f
is the frequency of the periodic vortex shedding. It
is evaluated as $, =0.177, which is very close to

the experimental value (0.18 in Williamson)[1] and
DNS result (0.183 in Inoue & Hatakeyama)[9] for
Re=150. Figs. 5 and 6 show the streamlines at
T(=Ut/L)=132 and vorticity field. In Fig. 6, a

vortex is shed from the upper side of the circular
cylinder during the period (T=127 and 132) and,
behind the cylinder, vortices become weaker with
increasing downstream distance.

Figure 7 shows the acoustic pressure field at
T=132 for three different Mach numbers (M=0.2,
0.25, and 0.3), where the contour level fluctuates at ,

APyep= 3x10%,7.5x10° and 1.0x107, respectively.

The solid lines indicate the positive pressures and
the dashed lines are the negative ones. As can be
seen from this figure, rarefaction waves with
negative Ap and compression waves with positive
Ap are generated alternately around the cylinder at

the origin, and propagate downstream and upstream,

N : :
. [T H
R U

100 &
Thooa et L Lo
-ig0 50 o 0 100

(a) M=02

(b) M=0.25

Fig. 6 Vorticity contours at two different instants at
M=0.2, Re=150. (a) T=127, (b) T=132.

respectively.

Figure 8 illustrates distributions and decays of
the sound pressure plotted along the three different
angles (0=45°90° and 135°) for the case of

Re=150 and 0.2. The distributions of Ap are

plotted against the radial distance r from the origin
at the three different times T=130, 131, and 132.
Each peak of the waves is found to propagate and
decay. The propagation speed of the waves is equal
to the speed of sound in the far field, in agreement
with the linear acoustic theory. Also, the decaying

curves are converged to the lines proportional to

+ V2 in the far field, which is again in accordance

with the theory. These results suggest that the
sounds generated from the cylinder at low Reynolds
numbers are precisely captured by FDLBM if both

(c) M=0.3

Fig. 7 Contours of sound pressure at T=132 and Re=150 for three different Mach numbers. The contour level fluctuates
at Apg, =3x 107,7.5x107 and 1.0x107, respectively. Solid lines: positive, dotted lines: negative.
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Fig. 8 Distribution and decays of sound pressure at three different directions. M=0.2. Re=150.
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Fig. 9 Schematic diagram of the flow field (a) and
computational mesh (enlarged) (b) for square
cylinder (Case 1).
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Fig. 10 Sound pressure distribution around square
cylinder for M=0.3 and Re=200 at T=142,

the flow dynamics in the near field and the wave
propagations in the far field are computed with high
accuracy.

4.2 DEPENDENCE FOR LATTICE IN NOISE
Furthermore, to validate the lattice dependence,
we consider the unsteady flowfield and the sound
generated by a square cylinder (see Fig. 9 (Case 1))
and a NACAO0012 airfoil (see Fig. 11 (Case
2))placed in a two-dimensional uniform flow. Case
1 has Re=200, U=0.2 and M=0.3(e,=0.22). Case 2

has Re=200, U=0.2 and M=0.2(e,=0.5) and an
angle of attack is given a=14 deg. All calculation

I: % R

(@ BN
Fig. 11 Schematic diagram of the flow field (a) and
computational mesh with NACAQ012 (enlarged)

(b) (Case 2).
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Fig. 12 Contours of sound pressure past a NACA0012
airfoil at 14 deg angle of attack. T=156, Re=200
and M=0.2.

conditions are the same in case of the circular
cylinder.

The simulated flowfields for two cases are
presented in Figs. 10 and 12, respectively. The solid
lines indicate the positive pressures and the dashed
lines are negative ones. As can be seen from Figs.
11 and 12, rarefaction waves with negative Ap

and compression waves with positive Ap are
generated alternately around the square cylinder
(see Fig. 10) and NACAQ0012 airfoil (see Fig. 12) at
the origin, and it propagate downstream and
upstream, respectively. With these results presented
here, it is considered that the acoustic waves have
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an isotropic characteristic regardless of the lattice
shapes.

5. CONCLUSIONS

In this paper we have simulate the acoustic
waves generated from the flow around a circular
cylinder using the FDLBM of the two-dimensional
21velocity model. The sound frequency is the same
as the vortex shedding frequency of the Karman
vortex street. The rarefaction waves and the
compression waves are alternately generated and
propagate toward downstream and upstream,
respectively. The sound pressure also decays
proportional to r " in the far acoustic field, which
agrees with the theoretical prediction.

The analysis with the square cylinder and
NACAO0012 also elucidated that the acoustic waves
have an isotropic characteristic regardless of the
lattice shapes.
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