• Title/Summary/Keyword: High-strength shotcrete

Search Result 58, Processing Time 0.023 seconds

Laboratory and Field Model Study on the Optimum Mix of Shotcrete in Tunnel Construction (터널의 SHOTCRETE 최적배합에 관한 실내 및 현장 모형 실험 연구)

  • 오병환;박칠림;백신원;장성욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.131-140
    • /
    • 1994
  • Recently, tunnels are increasingly constructed in this country with the increased construction of highways, high-speed railways and subways. Shotcreting is one of the major processes in the tunnel construction. Many problems, however, exist in the current shotcreting practice. The purpose of the present study is, therefore, to explore the problems in the current shotcreting practice, to derive an optimum mix for efficient shotcreting, To this end, extensive experimental study has been conducted. Optimum mixes with high quality and economy were derived. The present study provides a firm bast: in our country to apply high-quality shotcrete in tunnel construction.

An Experimental Study on the Effect of Cement Braine for Rebound ratio of shotcrete (숏크리트 리바운드율에 미치는 시멘트 분말도 영향에 관한 실험적 연구)

  • Kim, Young-Sun;Kim, Kwang-Ki;Kim, Jae-Young;Choi, Hyun-Kook;Lee, Joo-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.100-101
    • /
    • 2015
  • This study was carried out to investigate and analyse the influence of brain and unit weight of cement on the properties of shotcrete through the laboratory and field test. From the results of the test, the shotcrete with high blaine cement showed the rebound ratio lower and the strength properties higher than the shotcrete with normal blaine cement. Such as this was produced also in the mix with low unit weight of high blaine cement.

  • PDF

A Study on the Field test of the Ready-mixed Shotcrete using in the Large-scale Mine (광산 대규격 갱도에 대한 레디믹스트 숏크리트의 현장 적용성 평가)

  • Kim, Dong-Min;Lee, Heung-Soo;Shin, Hong-Jun;Kang, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1511-1516
    • /
    • 2009
  • In recent years, the large-scale shaft have been appling in domestic mine for mass production using a large machine, the safety of mine also have been increasing. And the new trial that shotcrete of tunnel field was apply to mine support was progressed. But, the conditions of domestic mine was different from that of tunnel, so, the batch plant of tunnel could not be installed in mine field because of low economical efficiency and difficulty for selection of site. Ready-mixed Shotcrete that mixed with high quality materials and could be controled shotcrete quality is producted in plants and transported to field, so do not need to batch plant. In this study, The Field test of the Ready-mixed Shotcrete was performed in the large-scale mine and was compared with the quality of Field mix shotcrete. As the result of the Field test, compressive strength and rebound of Ready-mixed Shotcrete were superior to these of Field mix shotcrete.

  • PDF

Setting Time, Strength and Rebound Rate of Shotcrete according In Accelerators (급결제에 따른 숏크리트의 응결, 강도 및 리바운드율)

  • Lee Seong-Haeng;Kim Yong-Ha;Hahm Hyung-Gil;Kim Kwan-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.427-434
    • /
    • 2005
  • An experimental investigation was carried out in order to verify the compressive strength, flexural strength, equivalent bending strength, rebound rate of shotcrete according to silicate accelerator, aluminate accelerator, cement mineral accelerator respectively and to especially evaluate the performance of shotcrete using cement mineral accelerator for high quality. The test result of compressive strength was showed that all accelerators were satisfied the required test value for each age, for the requirement of having the $75\%$ or higher compressive strength ratio to plain concretes at 28 days, cement mineral accelerator with $87\%$ compressive strength ratio was only satisfied. In flexural strength test, cement mineral accelerator was satisfied the flexural strength requirement in steel fiber reinforced shotcrete for each age. Aluminate type was conformed to the requirement for 28 days, but not at 1 day, silicate type was failed to satisfy standard requirement. Rebound rate was measured between $11{\~}19\%$ and cement mineral accelerator was showed comparatively lower rebound rate. Based on the test results, cement mineral accelerator exhibited excellent strength improvement and lower rebound rate compared to the conventional accelerator, its result is showed the possibility of making high performance shotcrete.

A Study on Properties of High Blaine Slag Cement for Shotcrete (숏크리트용 고분말도 슬래그 시멘트의 특성)

  • Kim, Jae-Young;Yum, Soo-Kyung;Yoo, Dong-Woo;Choi, Hyun-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.357-364
    • /
    • 2010
  • This study was performed to get basic information about properties of high blaine slag cement(HSC) to use shotcrete(or sprayed concrete and mortar). Particle size distribution, setting time and compressive strength test, analysis like as SEM, DSC thermal analysis, XRD was carried out to investigate principle properties of HSC. Setting time of HSC was delayed slightly, but influence of accelerators was more bigger than ordinary portland cement(OPC). Compressive strength of HSC at 28 days was more higher than OPC regardless of using accelerators. Results of analysis showed early period hydration products of HSC is more small and located widely, because of the interface of between cement particle and water is increased as specific surface of cement increase. From the SEM observation and analysis of DSC and XRD results, aluminates accelerators bring on some hydration products like as calcium aluminium hydrates, alkali free accelerators increases ettringite and monosulfates. Aluminates accelerators has a advantage of setting time and early strength, alkali free accelerators increases strength after 7 days.

Experimental Study on the Improvement of Shotcrete Performance by Addition of Calcium Aluminate Based Accelerator and Metakaolin (시멘트 광물계 급결제와 메타카올린에 의한 숏크리트의 고성능화에 대한 실험적 연구)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Park, Hae-Geun;Won, Jong-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.237-247
    • /
    • 2006
  • The use of high-performance shotcrete lining is indispensable to improve long-term durability of a tunnel and to apply the single-shell tunnelling method. Among a lot of shotcrete admixtures, pozzolan materials such as silica fume have positive effects on increasing the strength and the durability of shotcrete. It is also well known that a cement-based accelerator is much faster in setting time and more eco-friendly than conventional accelerators. This study aimed to improve the properties of wet-mix shotcrete by incorporating with Metakaolin and the calcium aluminate based accelerator. To compare Metakaolin with silica fume, mixing ratios of each material were varied as 4% and 8% of cement weight. Moreover, Metakaolin was blended with silica fume, and their binder was also set to 4% and 8% of cement weight. At each mixing condition, setting time, compressive strength, flexural strength, permeability and freezing-thawing resistance were measured. From the experiments, it was revealed Metakaolin could be a substituting material for silica fume.

Recent Issues in the Design and Construction of High-Performance Shotcrete Lining (고성능 숏크리트 라이닝의 설계 및 시공기술 분석)

  • 배규진;이석원;박해균;이명섭;김재권;장수호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The development of high-performance shotcrete lining is essential in improving the long-term durability of tunnels and in introducing single-shell tunnelling methods, where shotcrete as well as rockbolts are used as permanent support members. In this paper, new and advanced admixtures to improve shotcrete performance are introduced. In addition, requirements for mechanical properties as well as test items for quality control of shotcrete are summarized. A case study on the application of the pneumatic pin penetration test which can estimate compressive strength of shotcrete more easily and quickly is also illustrated. Previous studies to analyze the behaviors of shotcrete lining by considering its transient hardening and to carry out the sensitivity analysis of the design parameters of shotcrete lining are discussed to give fundamental concepts on rock-support interactions. Representative single-shell tunnelling methods where high-performance shotcrete lining is applied as a permanent support are also introduced.

Evaluation on Mechanical Performance and Chloride Ion Penetration Resistance of On-Site Shotcrete Made with Slurry-Type Accelerator (슬러리형 급결제를 활용한 현장적용 숏크리트의 역학적 성능 및 염해저항성 평가)

  • Kim, Hyun-Wook;Yoo, Yong-Sun;Han, Jin-Kyu;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The purpose of this research is to develop a slurry-type accelerator that contains various beneficial properties such as reduction of dust generation, lower alkalinity, early age strength development, etc., and uses such slurry type accelerator to produce high performance shotcrete that present excellent resistant against chloride ion penetration. In this work, shotcrete mixtures of 0.44 and 0.338 water-to-binder ratio (w/b) were produced at construction site using slurry-type accelerator. The mechanical properties and chloride ion penetration resistance of such shotcrete (including base concrete) were evaluated. According to the experimental results, the slurry-type accelerator was successfully used to produce both w/b 0.44 and 0.338 shotcretes. The 1 day and 28 day compressive strength of shotcrete were found to be closer to or higher than 10MPa and 40MPa, respectively. The w/b 0.338 shotcrete that used 40% replacement of blast furnace slag showed lower compressive strength than w/b 0.44 shotcrete without any mineral admixture at 1 day. However, the compressive strength with 40% blast furnace slag increased significantly at 28 day. Moreover, there was more than 50% increase in chloride ion penetration resistance with blast furnace slag, showing its strong potential for higher performance shotcrete application.

Mechanic Properties of HES-LMS Mortar (조강형 라텍스개질 스프레이 몰탈의 역학적 특성)

  • Lee, Jin-Beom;Choi, Sung-Yong;Kim, Ki-Heun;Kim, Yong-Kon;Yun, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.841-844
    • /
    • 2006
  • Recently, tunnels being constructed in korea with the increased construction of highways, high-speed railways and hydro structure. shotcrete and spray is one of the major processes in that construction. So general Shotcrete and spray has many problems on strength property, environmental pollution and human body noxiousness as the use of accelerater. However, In this paper using HES-LMS(High Early Strength Latex Modified Spray) without accelerater can solve problems which are mentioned above. problems that the hish early cement has can be solved by modifying material with latex. Therefore HES-LMS mortar is Classify by High performance and High ability. Analysis according to the variables such as W/C, Latex content and sand content is conducted. Studied about mechanical characteristic of material such as each parameter characteristic, and rebound characteristic is completed.

  • PDF

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.