• Title/Summary/Keyword: High-spin

Search Result 751, Processing Time 0.029 seconds

Study on the Spin-up of Fluid in a Semi-Circular Container Using a Zonal-Embedded-Grid Method (국소적 격자 삽입법을 이용한 반원주 내의 스핀업 유동 특성에 대한 연구)

  • Suh Yong Kweon;Yeo Chang Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.32-37
    • /
    • 2004
  • In this paper the numerical method with a zonal embedded grid system for an incompressible flow within a semi-circular container is presented. The algorithm is validated by its application to some typical flow models including the spin-up flow inside a semi-circular geometry. Flow visualization for the spin-up flows was used by PIV. The results show that at high Reynolds numbers the cyclonic cell at the left-hand side region moves along the circular wall and merges with the cell at the right-hand side region.

  • PDF

A Numerical Study on Spin-up Flows in a Shallow Quadrangular Container (얇은 정사각형 용기 내의 스핀-업 유동에 관한 수치해석적 연구)

  • Park, Jae-Hyun;Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1005-1013
    • /
    • 2002
  • Spin-up is a transient flow phenomenon occurring in a container when it starts to rotate from rest or its rotational speed increases from a low to high value. However, most studies on this subject have been for two-dimensional approximation. In this study, spin-up flows in a shallow rectangular container are analysed by using three-dimensional computation. We compared our results with those obtained by others using basically two-dimensional computation. Effect of two parameters, Reynolds number and liquid depth on the flow evolution is studied. We found that 2-D result is not accurate enough, and the vertical velocity distribution should be assumed of a fourth-order polynomial function for a better comparison.

Evolution of Spin and Superorbital Modulation in 4U 0114+650

  • Hu, Chin-Ping;Ng, Chi-Yung;Chou, Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.173-176
    • /
    • 2016
  • We report on a systematic analysis of the spin and superorbital modulations of the high-mass X-ray binary 4U 0114+650, which consists of the slowest spinning neutron star known. Utilizing dynamic power spectra, we found that the spin period varied dramatically during the RXTE ASM and Swift BAT observations. This variation consists of a long-term spin-up trend, and two ~1,000 day and one ~600 day random walk epochs previously, MJD 51,000, ~MJD 51,400-52,000, and ~MJD 55,100-56,100. We further found that the events appear together with depressions of superorbital modulation amplitude. This provides evidence of the existence of an accretion disk, although the physical mechanism of superorbital modulation remains unclear. Furthermore, the decrease of the superorbital modulation amplitude may be associated with the decrease of mass accretion rate from the disk, and may distribute the accretion torque of the neutron star randomly in time.

Preparation of tungsten metal film by spin coating method

  • Lee, Kwan-Young;Kim, Hak-Ju;Lee, Jung-Ho;Sohn, Il-Hyun;Hwang, Tae-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Metal thin films, which are indispensable constituents of ULSI (Ultra Large Scale Integration) circuits, have been fabricated by physical or chemical methods. However, these methods have a drawback of using expensive high vacuum instruments. In this work, the fabrication of tungsten metal film by spin coating was investigated. First of all, inorganic peroxopolytungstic acid (W-IPA) powder, which is soluble in water, was prepared by dissolving metal tungsten in hydrogen peroxide and by evaporating residual solvent. Then, the solution of W-IPA was mixed with organic solvent, which was spin-coated on wafers. And then, tungsten metal films, were obtained after reduction procedure. By selecting an appropriate organic solvent and irradiating UV, the sheet resistance of the tungsten metal film could be remarkably reduced.

Spin-Torque Oscillator using a Perpendicular Polarizer with Double Free Layers

  • Seo, Soo-Man;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.153-156
    • /
    • 2008
  • We conducted a micromagnetic modeling study to investigate the spin torque oscillator (STO) using a perpendicular polarizer. We used an additional layer of negative anisotropy constant materials (NAM) on a conventional STO. For the NAM layer, the magnetic easy plane is parallel to the in-plane easy axis of the free layer, and inhibits the development of the out-of-plane component of the magnetization in the free layer. As a result, this new type of STO provides a high frequency limit up to 50 GHz.

The Structural-Dependent Characteristics of Rashba Spin Transports in In0.5Ga0.5As/In0.5Al0.5As Heterojunctions

  • Choi, Hyon-Kwang;Hwang, Sook-Hyun;Jeon, Min-Hyon;Yamda, Syoji
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.140-143
    • /
    • 2011
  • The growth and characterization of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ narrow-gap inverted high electron mobility transistor structures, developed as a candidate material for spin-injection devices, are presented in this study. We have grown samples possessing surface $In_{0.5}Ga_{0.5}As$ channels of different thicknesses (30 nm and 60 nm) both with and without a thin 3 nm $In_{0.5}Ga_{0.5}As$ cap layer by using molecular beam epitaxy. We then investigated the in-plane transport properties as well as the Rashba spin-orbit coupling constant of the two-dimensional electron gas confined at the heterojunction interface.

Low Temperature Bonding Process of Silicon and Glass using Spin-on Glass (Spin-on Glass를 이용한 실리콘과 유리의 저온 접합 공정)

  • Lee Jae-Hak;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.77-86
    • /
    • 2005
  • Low temperature bonding of the silicon and glass using the Spin-on Glass (SOG) has been conducted experimentally to figure out the effects of the SOG solution composition and process variables on bond strength using the Design of Experiment method. In order to achieve the high quality bond interface without rack, sufficient reaction time of the optimal SOG solution composition is needed along with proper pressure and annealing temperature. The shear strength under the optimal SOG solution composition and process condition was higher than that of conventional anodic bonding and similar to that of wafer direct bonding.

Electron Spin Resonance Investigation of Fe3+ in Crystalline LiNbO3 Under the Polarized External Radiation

  • Park, Jung-Il;Cheong, Hai-Du
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • We study the electron spin resonance line-width (ESRLW) of $Fe^{3+}$ in crystalline $LiNbO_3$ ; the ESRLW is obtained using the projection operator method (POM) developed by Argyres and Sigel. The ESRLW is calculated to be axially symmetric about the c-axis and is analyzed by the spin Hamiltonian with an isotopic g factor at a frequency of 9.5 GHz. The ESRLW increases exponentially as the temperature increases, and the ESRLW is almost constant in the high-temperature region (T>8000 K). This kind of temperature dependence of the ESRLW indicates a motional narrowing of the spectrum when $Fe^{3+}$ ions substitute the $Nb^{5+}$ ions in an off-center position. It is clear from this feature that there are two different regions in the graph of the temperature dependence of the ESRLW.

An Experimental study on Improvement of Mechanical Press-Joining Strength of the Spin Drum Seaming Division in Washing Machine (스핀드럼 시밍부의 기계적 프레스 접합강도 향상에 관한 실험적 연구)

  • Kim, E.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.127-131
    • /
    • 2006
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that Press-joining Strength of Spin Drum Seaming division is improved .to attain that target. Generally, we are using Mechanical press-joining by Seaming and T.I.G (Tungsten Inert Gas) welding among part joint method. Mechanical press-joining method that is mainly using for Stainless Steel (STS430) Drum have lots of merit that consumption of energy is low more than welding and production costs cut down and generation of the corrosion is solved by removing weld zone defect and materials having different properties are enable to join without special equipment. But, it is difficult to realize joint strength required at high speed operation because joint strength of mechanical press-joining method is low remarkably in comparison with welding. Also, there are a lot of analysis difficulties and very limited research is under way due to the dynamic factor such as multistage plastic working, elastic recovery, residual stress etc. The results of this study show optimal joining condition for mechanical press-joining by performing lots of tensile joining strength test with various specimen under multi-change of important design factor such as seaming width, bead area and bead depth etc.

  • PDF

MBE-growth and Oxygen Pressure Dependent Electrical and Magnetic Properties of Fe3O4 Thin Films

  • Dung, Dang Duc;Feng, Wuwei;Sin, Yu-Ri-Mi;Thiet, Duong Van;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.60-60
    • /
    • 2011
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active research areas in spintronics. The high magnetoresistance and the high spin polarization (P) of electrons in the ferromagnetic electrodes of tunnel junction or intermediate layers are required. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, P ~ 100% spin polarization, and has a high Curie temperature (TC~850 K). Experiments demonstrated that the P~($80{\pm}5$)%, ~($60{\pm}5$)%, and ~40-55% for epitaxial (111), (110) and (001)-oriented Fe3O4 thin films, respectively. Epitaxial Fe3O4 films may enable us to investigate the effects of half metals on the spin transport without grain-boundary scattering.In addition, it has been reported that the Verwey transition (TV, a first order metal-insulator transition) of 120 K in bulk Fe3O4 is strongly affected by many parameters such as stoichiometry and stress, etc. Here we report that the growth modes, magnetism and transport properties of Fe3O4 thin films were strongly dependent on the oxygen pressure during film growth. The average roughness decreases from 1.021 to 0.263 nm for the oxygen pressure increase from $2.3{\times}10-7$ to $8.2{\times}10^{-6}$ Torr, respectively. The 120 K Verwey transition in Fe3O4 was disappeared for the sample grown under high oxygen pressure.

  • PDF