DOI QR코드

DOI QR Code

Electron Spin Resonance Investigation of Fe3+ in Crystalline LiNbO3 Under the Polarized External Radiation

  • Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University) ;
  • Cheong, Hai-Du (Division of Liberal Arts, Hanbat National University)
  • Received : 2013.11.10
  • Accepted : 2013.12.18
  • Published : 2013.12.20

Abstract

We study the electron spin resonance line-width (ESRLW) of $Fe^{3+}$ in crystalline $LiNbO_3$ ; the ESRLW is obtained using the projection operator method (POM) developed by Argyres and Sigel. The ESRLW is calculated to be axially symmetric about the c-axis and is analyzed by the spin Hamiltonian with an isotopic g factor at a frequency of 9.5 GHz. The ESRLW increases exponentially as the temperature increases, and the ESRLW is almost constant in the high-temperature region (T>8000 K). This kind of temperature dependence of the ESRLW indicates a motional narrowing of the spectrum when $Fe^{3+}$ ions substitute the $Nb^{5+}$ ions in an off-center position. It is clear from this feature that there are two different regions in the graph of the temperature dependence of the ESRLW.

Keywords

References

  1. R. T. smith and F. S. Welsh J. Appl. Phys. Lett. 42, 2219 (1971).
  2. D. B. Fraser and A.W. Warner J. Appl. Phys. 37, 3853 (1966). https://doi.org/10.1063/1.1707937
  3. H. C. Huang, J. D. Knox, Z. Turski, R. Wargo and J. J. Hanak Appl. Phys. Lett. 24, 109 (1974). https://doi.org/10.1063/1.1655114
  4. F. R. Gfeller J. Appl. Phys. Lett. 29, 655 (1976). https://doi.org/10.1063/1.88889
  5. I. P. Kaminow, J. R. Carruthers, E. H. Turner and L. W. Stulz J. Appl. Phys. Lett. 22, 540 (1973). https://doi.org/10.1063/1.1654500
  6. T. Takeda, A. Watanabe, and K. Sugihara Phys. Lett., A 27, 14 (1968). https://doi.org/10.1016/0375-9601(68)91308-X
  7. M. P. Petrov Fiz. Tver. Tela, 10, 3254 (1968).
  8. D. G. Rexford, Y. M. Kim, and H. S. Story J. Chem. Phys. 52, 860 (1970). https://doi.org/10.1063/1.1673065
  9. W. Xiaoguang, F. M. Peeters and J. T. Devreese Phys. Rev. B 34, 8800 (1986). https://doi.org/10.1103/PhysRevB.34.8800
  10. X. Wu, F. M. Peeters and J. T. Devreese Phys. Rev. B. 40, 4090 (1989). https://doi.org/10.1103/PhysRevB.40.4090
  11. X. J. kong, C. W. Wei and S. W. Gu Phys. Rev. B 39, 3230 (1989). https://doi.org/10.1103/PhysRevB.39.3230
  12. A. Suzuki and D. Dunn Phys. Rev. B 25, 7754 (1982). https://doi.org/10.1103/PhysRevB.25.7754
  13. H. Mori Progr. Theor. Phys. 34, 399 (1965). https://doi.org/10.1143/PTP.34.399
  14. P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973). https://doi.org/10.1103/PhysRevLett.31.1397
  15. R. Kubo J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570
  16. J. I. Park, J. Y. Sug, and H. R. Lee J. Kor. Phys. Soc. 51, 623 (2007). https://doi.org/10.3938/jkps.51.623
  17. J. I. Park, J, Y, Sug, and H. R. Lee J. Kor. Phys. Soc. 53, 776 (2008). https://doi.org/10.3938/jkps.53.776
  18. J. Y. Sug Phys. Rev. B 64, 235210 (2001). https://doi.org/10.1103/PhysRevB.64.235210
  19. J. I. Park, H. R. Lee, and S. H. Lee Jpn. J. Appl. Phys. 51, 52402 (2012). https://doi.org/10.7567/JJAP.51.052402
  20. J. I. Park, H. R. Lee, and H. K. Lee J. Magnetics 16, 108 (2011). https://doi.org/10.4283/JMAG.2011.16.2.108
  21. J. I. Park J. Magnetics 17, 255 (2012). https://doi.org/10.4283/JMAG.2012.17.4.255
  22. N. Sawaki J. Phys. C 16, 4611 (1983). https://doi.org/10.1088/0022-3719/16/23/021
  23. D. J. Keeble, M. Loyo-menoyo, Y. Furukawa, and K. Kitamura Phys. Rev. B 71, 224111 (2005). https://doi.org/10.1103/PhysRevB.71.224111