• Title/Summary/Keyword: High-speed signal

Search Result 1,497, Processing Time 0.029 seconds

The Effect of the Deformation on the Sensitivity of a Flexible PDMS Membrane Sensor to Measure the Impact Force of a Water Droplet (액적의 충격력 측정을 위한 유연 멤브레인 센서의 PDMS 변형에 의한 민감도의 영향)

  • Kang, Dong Kwan;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • This study investigates the effect of the deformation on the sensitivity of a flexible polydimethylsiloxane (PDMS) membrane sensor. A PDMS membrane sensor was developed to measure the impact force of a water droplet using a silver nanowire (AgNW). The initial deformation of the membrane was confirmed with the application of a tensile force (i.e., tension) and fixing force (i.e., compressive force) at the gripers, which affects the sensitivity. The experimental results show that as the tension applied to the membrane increased, the sensitivity of the sensor decreased. The initial electrical resistance increased as the fixing force increased, while the sensitivity of the sensor decreased as the initial resistance increased. The movement of the membrane due to the impact force of the water droplet was observed with a high-speed camera, and was correlated with the measured sensor signal. The analysis of the motion of the membrane and droplets after collision confirmed the periodic movement of not only the membrane but also the change in the height of the droplet.

PR (1 2 2 1) Signal Decoding for DVD using the Circular Analog Parallel Circuits (순환형 아날로그 병렬 회로망 구조를 이용한 DVD용 PR (1 2 2 1) 신호의 디코딩)

  • Son Hongrak;Kim Hyonjeong;Kim Hyongsuk;Lee Jeongwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.17-26
    • /
    • 2006
  • The analog Viterbi decoder for the PR (1 2 2 1) which is used for BVD read channel is designed with circular analog parallel circuits. Since the inter symbol interference is serious problem in the high density magnetic storage device or DVD, the PRML technology is normally employed for the purpose of minimizing the decoding error. The feature of the PRML technology is with the multi-level coding according to the predetermined combining rule among the neighboring symbols and with the decoding according to the known combining rule. Though the conventional PRML technology is implemented with the digital circuits, the recent trend towards this end is with the utilization of the analog circuits due to the requirements of higher speed and lower power in the DVD read channel. In this study, the Viterbi decoder which is the bottleneck of the PRML implementation is designed with the analog parallel circuit structure. The designed Viterbi decoder for the PR (1 2 2 1) signal shows 3 times faster in the speed and 1/3 times less in the power consumption than thoseoftheconventionaldigitalcounterpart.

Analysis of Bicycle Crossing Times at Signalized Intersections for Providing Safer Right of Bicycle Users (자전거 이용자 행태 반영을 위한 신호교차로에서의 자전거 횡단시간 연구)

  • Son, Young-Tae;Lee, JIn-Kak;Lee, Sang-Hwa;Kim, Hong-Sang
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.83-89
    • /
    • 2007
  • When allocating traffic signal at the signalized intersection, minimum green time and clearance time for bicyclists should be significantly considered in order to enhance safety aspects to bicyclists when crossing intersections, especially where intersections with exclusive bicycle paths that are physically separated from pedestrians. In this study, field measurements related to bicycle crossing time, including minimum peen time and clearance time, were collected and analyzed according to bicycles crossing types at the signalized intersections where high rate of bicyclists exists. Three types of bicycle crossing are defined as follows 1) stopping: completely stop before crossing (at least one foot on found) 2) riding: crossing with riding bicycle 3) pulling: crossing without riding bicycles. Minimum green time based on pedestrian speeds should be used as crossing time in this case. For bicyclists, speed of bicycle that is applicable to estimate the minimum green time is in the 1.36m/sec($15^{th}$ percentile) to 1.60m/sec($25^{th}$ percentile) range in case of its stopping. Also it is in the 0.75($15^{th}$ percentile) to 0.87($25^{th}$ percentile) range for pulling at crosswalk. In addition, speed of bicycle to consider for calculating the clearance time is in the 2.51m/sec($15^{th}$ percentile) to 2.79m/sec($25^{th}$ percentile). These values also resulted from $15^{th}$ percentile or $25^{th}$ percentile speeds of riding. The results of this study are expected to be supported in traffic signal allocation process, reflecting bicyclists' characteristics.

  • PDF

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems

  • Kim, Susie;Na, Seung-In;Yang, Youngtae;Kim, Hyunjong;Kim, Taehoon;Cho, Jun Soo;Kim, Jinhyung;Chang, Jin Woo;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.

Development of active discharge tester for high capacity lithium-ion battery (대용량 리튬 이온 배터리용 Active 방전시험기의 개발)

  • Park, Joon-Hyung;Yunana, Gani Dogara;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.

Damping Property Measurement of Damping Alloy by Dynamic Strain Gage (Dynamic Strain Gage를 이용한 제진합금의 제진특성 측정)

  • Lee, Gyu-Hwan;Jo, Gwon-Gu;Lee, Bong-Jik;Sim, Myeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.502-509
    • /
    • 1994
  • New damping measurement equipment was designed using the dynamic strain gage and high speed analog to digital signal 12 bit converter and compared it with existing equipment. The damping properties of general material and high damping material were also studied by this machine. The SDC (specific damping capacity) was measured with various heat treatment condition, initial vibration amplitude and internal stress. The vibration amplitude of high damping material is decreased within nearly less than 0.4 second after applying the initial forced vibration. But that of general material is still vibrating at the same time. After furnace-cooling heat treatment, SDCmax of Fe-lGwt.%Cr system was more than 40% and that of Fe-5.5wt.%Al alloy was more than 30% after air-cooling heat treatment. Upon increasing of initial vibration amplitude, it is detected the migration of SDCmax into the region of small vibraton amplitude. Damping capacity is decreased rapidly as the internal stress Increases. Damping measurement equipment in the present study was ahln to give the more accurate results of damping properties in the small vibration amplitude region.

  • PDF

Ultrasonic Characterization of a Resonating High-Speed Microcantilever (초음파 기법을 이용한 고속 마이크로 캔틸레버의 공진 특성평가)

  • Kim, Yun Young;Lee, Seonwook;Park, Jiwon;Cho, Younho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.483-489
    • /
    • 2017
  • An ultrasonic technique was developed to characterize the resonance behavior of a microcantilever operating in a megahertz regime. A high-power ultrasonic pulser and a contact transducer were employed to excite the silicon microcantilever, and a Michelson interferometer was used to obtain the time domain waveform. The natural frequency of the microcantilever was evaluated through the fast Fourier transform of the signal, and a numerical analysis using the finite element method confirmed the measurement data. The present study proposes a novel and facile method to evaluate nanoscale materials and structures with high sensitivity compared to conventional approaches.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.

Dynamic Routing and Priority-based Data Transmission Schemes in Avionic Ethernet for Improving Network QoS (항공전자 이더넷의 네트워크 성능 향상을 위한 동적 라우팅 기법 및 우선순위기반 데이터 전송 기법)

  • Lee, Won Jin;Kim, Yong Min
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.302-308
    • /
    • 2019
  • Aircraft data network (ADN) is a data networking for signal transmission among avionic systems in aircraft, and it mostly has been applied MIL-STD-1553B that guarantees high reliability considering its application environments. However, commercial Ethernet has been widely applied for ADN recently, and its range of applications have increased. Ethernet provides high speed of data transmission, however, it could not guarantee quality of service (QoS) so high as MIL-STD-1553B. In this paper, we propose dynamic routing and priority based data transmission schemes in order to improve the QoS of legacy Ethernet. Our propose schemes can be applied to Ethernet switch, and it is able to manage network traffic efficiently, and reduce the time for data transmission. We analyze the packet transmission time for both legacy and proposed schemes in Ethernet environments using simulation, and we show that our proposed scheme can reduce the time for data transmission compare to legacy spanning tree protocol.

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.