DOI QR코드

DOI QR Code

Dynamic Routing and Priority-based Data Transmission Schemes in Avionic Ethernet for Improving Network QoS

항공전자 이더넷의 네트워크 성능 향상을 위한 동적 라우팅 기법 및 우선순위기반 데이터 전송 기법

  • Received : 2019.08.06
  • Accepted : 2019.08.26
  • Published : 2019.08.30

Abstract

Aircraft data network (ADN) is a data networking for signal transmission among avionic systems in aircraft, and it mostly has been applied MIL-STD-1553B that guarantees high reliability considering its application environments. However, commercial Ethernet has been widely applied for ADN recently, and its range of applications have increased. Ethernet provides high speed of data transmission, however, it could not guarantee quality of service (QoS) so high as MIL-STD-1553B. In this paper, we propose dynamic routing and priority based data transmission schemes in order to improve the QoS of legacy Ethernet. Our propose schemes can be applied to Ethernet switch, and it is able to manage network traffic efficiently, and reduce the time for data transmission. We analyze the packet transmission time for both legacy and proposed schemes in Ethernet environments using simulation, and we show that our proposed scheme can reduce the time for data transmission compare to legacy spanning tree protocol.

항공 데이터 네트워크 (ADN; aircraft data network)는 항공기 항전장비들 간 신호데이터 송수신을 위한 네트워크로써 항공기 운용 환경을 고려해 MIL-STD-1553B와 같이 고신뢰성 프로토콜이 사용되어왔다. 최근에는 고속통신의 필요성이 증가함에 따라 상용 이더넷이 ADN으로 활용되고 있으며, 적용 범위가 증가하고 있는 추세이다. 이더넷은 MIL-STD-1553B 프로토콜에 비해 고속 데이터 전송이 가능하다는 장점이 있지만, 지연시간이 길다는 낮은 단점이 있다. 본 논문에서는 ADN으로 활용되는 이더넷의 성능 향상을 위한 동적 라우팅 기법과 우선순위 기반 데이터 전송기법을 제시한다. 제시기법은 이더넷 스위치에 적용되어 네트워크 트래픽의 효율적 관리 및 고우선순위 데이터 전송시간 단축시킬 수 있다. 본 논문에서는 이더넷 스위치 기반 항공전자 네트워크 환경에서 시뮬레이션을 통해 제시기법이 기존 이더넷에서 사용되는 스패닝 트리 프로토콜에 비해 데이터 전송시간을 단축시킬 수 있음을 입증한다.

Keywords

References

  1. N. Thanthry, M. S. Ali, and R. Pendse, “Security, internet connectivity and aircraft data networks,” IEEE Aerospace and Electronic Systems Magazine, Vol. 21, No. 11, pp. 3-7, Aug. 2016. https://doi.org/10.1109/MAES.2006.284351
  2. N. Thanthry, S. Shingvi, and R. Pendse, "Aircraft data networks and performance enhancement proxies," in Proceedings of the IEEE 25th Digital Avionics Systems Conference, Portland: OR, pp. 1-6, Oct. 2006.
  3. Michael Hegarty, "Leveraging MIL-STD-1553's physical layer for use in aircraft data networks," in Proceedings of the IEEE Digital Avionics Systems Conference, Seattle: WA, pp. 1-8, Oct. 2011.
  4. MIL-STD-1553B, "Aircraft Internal Time Division Command/Response Multiplex Data Bus," 1978.
  5. Mike Glass, "IRIG 106 chapter 10 standardizes MIL-STD-1553B data recording," in Proceedings of the 26th Digital Avionics Systems Conference, Dallas: TX, pp. 1-9, Oct. 2017.
  6. K. Bisson and T. Troshynski, “Switched Ethernet testing for avionics applications,” IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 5, pp. 31-35, May 2004.
  7. V. M. Konyushko, "Ethernet based aircraft control," in Proceedings of the 2nd IEEE Methods and Systems of Navigation and Motion Control International Conference, Ukraine, pp. 161-163, Oct. 2012.
  8. J. Li, J. Yao, and D. Huang, “Ethernet-based avionic databus and time-space partition switch design,” Journal of Communications and Networks, Vol. 17, No. 3, pp. 286-295, June 2015. https://doi.org/10.1109/JCN.2015.000051
  9. M. Kreitlow, R. Kebe, F. Nieder, F. Sabath, F. Smailus, and T. Stadtler, "Robustness of Ethernet in complex aircraft environment," in Proceedings of the 2015 Asia-Pacific Symposium, Taiwan, pp. 657-660, May 2015.
  10. IEEE Computer Society: IEEE Standard for Ethernet, 2016.
  11. Y. T. Kim, Y. C. Jung, and S. W. Kim, “QoS-guaranteed realtime multimedia service provisioning on broadband convergence network (BcN) with IEEE 802.11e wireless LAN and fast/gigabit Ethernet,” Journal of Communications and Networks, Vol. 9, No. 4, pp. 511-523, Dec. 2007. https://doi.org/10.1109/JCN.2007.6182887
  12. A. Gomez-Sacristan, V. M. Sempere-Paya, and M. A. Rodriguez-Hernandez, “Virtual laboratory for QoS study in next-generation networks with metro Ethernet access,” IEEE Transactions on Education, Vol. 59, No. 3, pp. 187-193, Aug. 2016. https://doi.org/10.1109/TE.2015.2498120
  13. Y. S. Lee, J. H. Kim, and J. W. Jeon, “FlexRay and Ethernet AVB synchronization for high QoS automotive gateway,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 7, pp. 5737-5751, July 2017. https://doi.org/10.1109/TVT.2016.2636867
  14. IEEE Computer Society: IEEE Standard for Bridges and Bridged Networks, 2014.
  15. IEEE Computer Society: IEEE Standard for Local and metropolitan area networks: media access control (MAC) bridges, 2004.