• Title/Summary/Keyword: High-speed dry cutting

Search Result 25, Processing Time 0.022 seconds

Gas Exchanges and Dehydration in Different Intensities of Conditioning in Tifton 85 Bermudagrass: Nutritional Value during Hay Storage

  • Pasqualotto, M.;Neres, M.A.;Guimaraes, V.F.;Klein, J.;Inagaki, A.M.;Ducati, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.807-815
    • /
    • 2015
  • The present study aimed at evaluating the intensity of Tifton 85 conditioning using a mower conditioner with free-swinging flail fingers and storage times on dehydration curve, fungi presence, nutritional value and in vitro digestibility of Tifton 85 bermudagrass hay dry matter (DM). The dehydration curve was determined in the whole plant for ten times until the baling. The zero time corresponded to the plant before cutting, which occurred at 11:00 and the other collections were carried out at 8:00, 10:00, 14:00, and 16:00. The experimental design was randomised blocks with two intensities of conditioning (high and low) and ten sampling times, with five replications. The high and low intensities related to adjusting the deflector plate of the free iron fingers (8 and 18 cm). In order to determine gas exchanges during Tifton 85 bermudagrass dehydration, there were evaluations of mature leaves, which were placed in the upper middle third of each branch before the cutting, at every hour for 4 hours. A portable gas analyser was used by an infrared IRGA (6400xt). The analysed variables were photosynthesis (A), stomatal conductance (gs), internal $CO_2$ concentration (Ci), transpiration (T), water use efficiency (WUE), and intrinsic water use efficiency (WUEi). In the second part of this study, the nutritional value of Tifton 85 hay was evaluated, so randomised blocks were designed in a split plot through time, with two treatments placed in the following plots: high and low intensity of cutting and five different time points as subplots: cutting (additional treatment), baling and after 30, 60, and 90 days of storage. Subsequently, fungi that were in green plants as well as hay were determined and samples were collected from the grass at the cutting period, during baling, and after 30, 60, and 90 days of storage. It was observed that Tifton 85 bermudagrass dehydration occurred within 49 hours, so this was considered the best time for drying hay. Gas exchanges were more intense before cutting, although after cutting they decreased until ceasing within 4 hours. The lowest values of acid detergent insoluble nitrogen were obtained with low conditioning intensity after 30 days of storage, 64.8 g/kg DM. The in vitro dry matter of Tifton 85 bermudagrass did not differ among the storage times or the conditioning intensities. There was no fungi present in the samples collected during the storage period up to 90 days after dehydration, with less than 30 colony forming units found on plate counting. The use of mower conditioners in different intensities of injury did not speed up the dehydration time of Tifton 85.

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • 정창주;고학균;이종호;강화석
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-24
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist\ulcornerure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres\ulcornerhing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr\ulcorneresher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

  • PDF

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

The New Generation Laser Dicing Technology for Ultra Thin Si wafer

  • Kumagai, Masayoshi;Uchiyama, N.;Atsumi, K.;Fukumitsu, K.;Ohmura, E.;Morita, H.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2006.10a
    • /
    • pp.125-134
    • /
    • 2006
  • Process & mechanism $\blacklozenge$ The process consists from two steps which are laser processing step and separation steop. $\blacklozenge$ The wavelength of laser beam is transmissible wavelength for the wafer. However, inside of Si wafer is processed due to temperature dependence of optical absorption coefficient Advantage & Application $\blacklozenge$ Advantages are high speed dicing, no debris contaminants, completely dry process, etc. $\blacklozenge$ The cutting edges were fine, The lifetime and endurances did not degrade the device characteristics $\blacklozenge$ A separation of a wafer with DAF was introduced as an application for SiP

  • PDF

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.