DOI QR코드

DOI QR Code

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties

Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성

  • Lee, Han-Chan (Department of Electrical Engineering, Inha University)
  • 이한찬 (인하대학교 전기공학과)
  • Received : 2016.09.19
  • Accepted : 2016.09.24
  • Published : 2016.10.01

Abstract

Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Keywords

References

  1. J. Takadoum and H. H. Bennani, Surf. Coat. Technol., 96, 272-282 (1997). [DOI: http://dx.doi.org/10.1016/S0257-8972(97)00182-5]
  2. H. Riedl, C. M. Koller, F. Munnik, H. Hutter, F. Mendez Martin, R. Rachbauer, S. Kolozsvari, M. Bartosik, and P. H. Mayrhofer, Thin Solid Films, 603, 39-49 (2016). [DOI: http://dx.doi.org/10.1016/j.tsf.2016.01.039]
  3. I. V. Safronov, V. I. Shymanski, V. V. Uglov, N. T. Kvasov, and N. N. Dorozhkin, Comput. Mater. Sci., 123, 256-262 (2016). [DOI: http://dx.doi.org/10.1016/j.commatsci.2016.06.006]
  4. M. Naddaf, B. Abdallah, M. Ahmad, and M. A-Kharroub, Nuclear Instruments and Methods in Physics Research B, 381, 90-95 (2016). [DOI: http://dx.doi.org/10.1016/j.nimb.2016.05.029]
  5. Y. X. Ou, J. Lin, S. Tong, W. D. Sproul, and M. K. Lei, Surf. Coat. Technol., 293, 21-27 (2016). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2015.10.009]
  6. J. Shi, C. M. Muders, A. Kumar, X. Jiang, and Z. L. Pei, J. Gong, C. Sun, Appl. Surf. Sci., 258, 9642-9649 (2012). [DOI: http://dx.doi.org/10.1016/j.apsusc.2012.06.002]
  7. J. Shi, A. Kumar, L. Zhang, X. Jiang, Z. L. Pei, J. Gong, and C. Sun, Surf. Coat. Technol., 206, 2947-2953 (2012). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2011.12.027]
  8. Z. G. Yuan, L. Sun, W. B. Gong, Z. L. Xu, and X. Wu, Thin Solid Films, 603, 75-79 (2016). [DOI: http://dx.doi.org/10.1016/j.tsf.2016.01.053]
  9. Q. Ma, F. Zhou, S. Gao, Z. Wu, Q. Wang, K. Chen, Z. Zhou, and L.K.Y. Li, Appl. Surf. Sci., 377, 394-405 (2016). [DOI: http://dx.doi.org/10.1016/j.apsusc.2016.03.190]
  10. S. J. Heo, S. W. Kim, I. W. Yeo, S, J. Park, and Y. S. Oh, Ceram. Int., 42, 5231-5237 (2016). https://doi.org/10.1016/j.ceramint.2015.12.048
  11. C. W. Zou, J. Zhang, W. Xie, L. X. Shao, L. P. Guo, and D. J. Fu, Appl. Surf. Sci., 257, 10373-10378 (2011). [DOI: http://dx.doi.org/10.1016/j.apsusc.2011.06.086]
  12. M. Thuvander, G. Ostberg, M. Ahlgren, and L.K.L. Falk, Ultramicroscopy, 159, 308-313 (2015). [DOI: http://dx.doi.org/10.1016/j.ultramic.2015.04.008]
  13. H. C. Lee, K. I. Moon, and P. K. Shin, J. Korean Inst. Surf. Eng., 49, 4 (2016).