• Title/Summary/Keyword: High-salt

Search Result 2,101, Processing Time 0.031 seconds

PC12 Cell Protective Effects of Broccoli (Brassica oleracea var. italica) Leaf Fraction against H2O2-induced Oxidative Stress (H2O2로 유발된 산화적 스트레스에 대한 브로콜리(Brassica oleracea var. italica) 잎 분획물의 PC12 cell 보호 효과)

  • Park, Seon Kyeong;Jin, Dong Eun;Park, Chang Hyeon;Seung, Tae Wan;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.483-488
    • /
    • 2014
  • To examine the physiological effects of broccoli (Brassica oleracea var. italica) leaf, the bioavailable compounds in broccoli leaf extract, and its in vitro neuroprotective effects against $H_2O_2$-induced oxidative stress were examined in this study. The chloroform fraction of broccoli leaf extract had the highest total phenolic content of all the fraction than others, and the highest 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging activity and malondialdehyde (MDA) inhibitory effect. Intracellular reactive oxygen species (ROS) accumulation resulting in $H_2O_2$-treated in PC12 cells was significantly lower when the chloroform fraction was present in the medium compared to that in PC12 cells treated with $H_2O_2$ alone. In a cell viability assay performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the chloroform fraction showed protective effects against $H_2O_2$-induced neurotoxicity and inhibited lactate dehydrogenase (LDH) release into the medium. High-performance liquid chromatography (HPLC) analysis showed that ferulic acid was the predominant phenolic compound in chloroform fraction of broccoli leaf.

Screening of Ochratoxin A Producing Fungi from Greenhouse Horticulture (시설원예산물로부터 Ochratoxin A 생성 곰팡이의 검색)

  • Kang, Sung-Jo;Park, Bong-Jung;Lee, Jong-Ok;Kang, Jin-Soon;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1415-1419
    • /
    • 1998
  • In order to evaluate the safety of greenhouse horticultures, a large number sample sources were collected, and the fungi of Aspergillus sp. and Penicillium sp. were isolated from them. Indirect competitive ELISA method and high performance liquid chromatography (HPLC) were applied to confirm the ochratoxin A producing abilities of isolated strains. One hundred ninety two sample sources including soil, pepper, strawberry and water mellon were collected for fungi isolation from western Gyeongnam, Andong and Gyeongbok. One hundred forty two strains of Aspergillus sp. and one hundred fifty three strains of Penicillium sp. were isolated respectively from them. The isolated fungi were tested for the production of ochratoxin A by ELISA. After culture of them on the modified sucrose low salt medium at $28^{\circ}C$ for 15 days, we found that five strains of Penicillium sp. produced ochratoxin A at the levels of $0.084{\sim}2.128\;{\mu}g/mL$. Among them, #129-2 strain isolated from water melon, showed the highest level of ochratoxin A as $2.128\;{\mu}g/mL$ broth. However, all of isolated Aspergillus sp. didn't produce ochratoxin A. When we compared the results of ELISA method with HPLC method, ochratoxin A production of each isolated strains showed very similar levels.

  • PDF

Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging

  • Kobayashi, Yoshio;Morimoto, Hikaru;Nakagawa, Tomohiko;Gonda, Kohsuke;Ohuchi, Noriaki
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.159-169
    • /
    • 2013
  • A preparation method for gadolinium compound (GdC) nanoparticles coated with silica ($GdC/SiO_2$) is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at $80^{\circ}C$ using $1.0{\times}10^{-3}$ M $Gd(NO_3)_3$, 0.5 M urea and $0-3.0{\times}10^{-4}$ M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as $40.5{\pm}6.2$ nm, which were colloidally stable, were prepared at an EDTA concentration of $2.0{\times}10^{-4}$ M. Silica-coating of the GdC nanoparticles was performed by a St$\ddot{o}$ber method at $35^{\circ}C$ using $1.0-10.0{\times}10^{-3}$ M tetraethylorthosilicate (TEOS), 11 M $H_2O$ and $1.5{\times}10^{-3}$ M NaOH in ethanol in the presence of $1.0{\times}10^{-3}$ M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of $GdC/SiO_2$ particles with an average size of $106.1{\pm}11.2$ nm at a TEOS concentration of $5.0{\times}10^{-3}$ M. The gadolinium (Gd) concentration of $1.0{\times}10^{-3}$ M in the as-prepared $GdC/SiO_2$ particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of $GdC/SiO_2$ particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated $GdC/SiO_2$ colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.

Analysis of Synthetic Fragrances (SFs) in Water Using Stir Bar Sorptive Extraction (SBSE) and GC-MS/MS (교반막대 추출법과 GC-MS/MS를 이용한 수중의 합성 향물질류 분석)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Jin-Taek;Ryu, Dong-Choon;Kwon, Ki-Won;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.387-395
    • /
    • 2014
  • A highly sensitive analytical method based on stir bar sorptive extraction (SBSE) technique and gas chromatography/tandem mass spectrometry (GC-MS/MS) has been developed, allowing the simultaneous multi-analyte determination of 11 synthetic fragrances (SFs) in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 40 mL of water sample at pH 3 and stirred at 1,100 rpm for 120 min. Other SBSE parameters (salt effect and presence of organic solvent) were optimised. The method shows good linearity (coefficients > 0.990) and reproducibility (RSD < 10.9%). The extraction efficiencies were above 83% for all the compounds. The limits of detections (LOD) and limits of quantification (LOQ) were 2.1~4.1 ng/L and 6.6~12.9 ng/L, respectively. The developed method offers the ability to detect 11 SFs at ultra-low concentration levels with only 40 mL of sample volume. Matrix effects in tap water, river water, wastewater treatment plant (WWTP) final effluent water and seawater were investigated and it was shown that the method is suitable for the analysis of trace level of 11 SFs. The method developed in the present study has the advantage of being rapid, simple, high-sensitive and both user and environmentally friendly.

Effect of Gypsum Application on Reducing Methane (CH4) Emission in a Reclaimed Coastal Paddy Soil (간척지 논 토양 개량제로서 석고처리가 메탄 배출량 저감에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • BACKGROUND: Gypsum($CaSO_4{\cdot}2H_2O$) is known as an ideal amendment to improve soil quality of the reclaimed coastal land. Since gypsum has very high concentration of electron acceptor like ${SO_4}^{2-}$, its application might be effective on reducing $CH_4$ emission during rice cultivation, but its effect has not been studied well. METHODS AND RESULTS: The effect of gypsum on $CH_4$ emission and rice growth characteristics was studied by pot test, which was packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Chemical-grade gypsum was applied in two soils having EC 2.25 and 9.48 dS/m at rates of 0, 0.5, 1.0 and 2.0%(wt/wt). $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. $CH_4$ emission rate was significantly decreased with increasing salt accumulation and gypsum application levels. With increasing gypsum application, dissolved ${SO_4}^{2-}$ concentration in the leachate water was significantly increased, which might have suppressed $CH_4$ production in soil. Total $CH_4$ flux was dramatically decreased with increasing gypsum application. In contrast, rice yield was increased with increasing gypsum application and then achieved maximum productivity at 1.0% gypsum application in two soils. CONCLUSION(s): Gypsum is a very good soil amendment to suppress $CH_4$ emission in reclaimed coastal paddy soils, and improve rice productivity and soil properties. The optimum application level of gypsum is assumed at ca. 1% to improve soil productivity with reducing effectively $CH_4$ emission during rice cultivation.

Effect of Coagulants on the Quality of Soybean Curd Added With Cow's Milk (응고제가 우유 첨가 두부의 품질에 미치는 영향)

  • Kim, Tae-Young;Kim, Joong-Man;Cho, Nam-Jun
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.370-378
    • /
    • 1994
  • Soybean curd added with 40% of cow’s milk was prepared with eight coagulants such as calcium acetate, calcium lactate, calcium chloride, calcium sulfate, magnesium chloride, glucono-delta lactone (GDL), acetic acid and lactic acid. The curd products were evaluated by the chemical composition, coprecipitation porperties, mineral content, yield, color and textural characteristics. The lowest concentrations for protein coprepitation were 0.3% (v/v) for calcium salts, 0.4% (v/v) for magnesium chloride, 0.2% (v/v) for organic acids. Turbidity and crude protein of whey were markedly decreased at these concentrations. The optimal concentrations of coagualnts used for soybean curd preperation were 1.2% (v/v) for calcium acetate, calcium sulfate and calcium lactate, 1.0% (v/v) for calcium chloride and GDL, 0.8% (v/v) for magnesium chloride and lactic acid, 0.6% (v/v) for acetic acid. It was observed that of the eight coagulants tested, calcium chloride provided a satisfactory curd in quality. Calcium content of soybean curds by the calcium salt coagulants was higher than that by organic acid coagulants. Through the examination on the textural properties by a texturemeter was found out that acetic acid treated soybean curd among the organic acids, calcium salts and magnesium chloride treated curds had very high hardness value. All the curd products prepared in this experiment had a pale yellow color as affected by the value of L (lightness), a (redness) and b (yellowness). Although the colorimetric readings showed that the soybean curds prepared with the organic acids had higher L value but lower a and b value in comparison to calcium salts and magnesium chloride treated curds.

  • PDF

Phosphate Uptake by Acinetobacter lwoffi PO8 and Accumulation (Acinetobacter lwoffi PO8에 의한 인산흡수 및 축적)

  • Yoon, Min-Ho;Ko, Jung-Youn;Choi, Woo-Young;Shin, Kong-Sik
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.163-168
    • /
    • 2000
  • To remove phosphate accumulated in the soil and water, Acinetobacter lwoffi PO8 possessing a high ability to accumulate phosphate was isolated from a active sludge. Bacterium was cultured in the liquid medium containing $150\;{\mu}g/mL$ of phosphate at $30^{\circ}C$ in different culture conditions to examine intracellular phosphate uptake. The initial pH in the range of $7.5{\sim}8.5$ was effective on the growth and phosphate uptake of the strain. Glycerol and arabinose used as a carbon sources showed 93 and 91% the phsphate uptake, respectively. Among the nitrogen sources, ammonium salt such as $NH_4NO_3$ and $(NH_4)_2SO_4$ was effectively utilized on the phosphate uptake compared with amino compounds. The rate of phosphate uptake of $NH_4NO_3$, and $(NH_4)_2SO_4$, was 95 and 96%, respectively The growth and Phosphate uptake ability in the strain were significantly promoted when metal ions were added in the medium; $Co^{2+}$, however, was not utilized by the strain. The capacity of phosphate uptake was enhanced to $10{\sim}20%$ when arginine, methionine, or lysine was added. Using $^{32}P$ to examine the uptake Pattern of intracellular phosphate, experiment result showed that polyphosphate was largely found in the fraction of intracellular inorganic phosphate of Acinetobacter lwoffi PO8.

  • PDF

Isolation of Agrobacterium sp. BE516 from the Root of Miscanthus sacchariflorus and Its Plant Growth Promoting Activity (물억새 뿌리로부터 Agrobacterium sp. BE516 균주의 분리 및 식물생육촉진활성)

  • Kang, Hye-Young;Park, Dong-Jin;Lee, Jae-Chan;Kwon, Mi-Kyung;Kim, Seung-Bum;Kim, Chang-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.2
    • /
    • pp.129-133
    • /
    • 2012
  • To exploit plant growth promoting bacteria in the roots of Miscanthus sacchariflorus, a biomass energy crop, total 64 bacteria were isolated. For the investigation of plant growth promoting effects from the isolated bacteria, production of indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activities were tested and other cultural conditions were examined. As results, 8 isolates showed plant growth promoting effects on the M. sacchariflorus and an isolate designated Agrobacterium sp. BE516 has the highest activity by enhancing the shoot elongation over 2-fold than the control. Agrobacterium sp. BE516 produced 64 ${\mu}g$ IAA per mL and showed ACC deaminase activity which is involved in the resistance to environmental stress such as high salt and drought. It could grow at low temperature in the range from 4 to $15^{\circ}C$, at pH 4.0 and at 4% NaCl. These results indicate that the Agrobacterium sp. BE516 can be useful as a bio-fertilizer for M. sacchariflorus under the stressed conditions.

Effect of Calcium Chloride (CaCl2) on the Characteristics of Photosynthetic Apparatus, Stomatal Conductance, and Fluorescence Image of the Leaves of Cornus kousa (염화칼슘 처리가 산딸나무 잎의 광합성 기구, 기공전도도 및 형광이미지 특성에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 2009
  • Deicing salt is used to melt snow and ice on the road for traffic safety during the winter season, which accumulates in the roadside vegetation and induces visible injuries. The damage may accelerate particularly when it coincides with early spring leaf out. In order to better understand the response mechanisms, C. kousa (3-year-old) was irrigated twice prior to leaf bud in a rhizosphere with solutions of 0.5, 1.0, and 3.0% calcium chloride ($CaCl_2$) concentration, that were made by using an industrial $CaCl_2$ reagent practical deicing material in Seoul. Physiological traits of the mature leaves were progressively reduced by $CaCl_2$ treatment, resulting in reductions of total chlorophyll contents, chlorophyll a:b, photosynthetic rate, quantum yield, stomatal conductance, $F_V/F_M$, and NPQ. On the contrary, light compensation point and dark respiration were increased at high $CaCl_2$ concentration. A decrease in intercellular $CO_2$ concentration by stomatal closure first resulted in a reduced photosynthetic rate and then was accompanied by low substance metabolic rates and photochemical damage. Based on the reduction of physiological activities at all treatments ($CaCl_2$ 0.5%, 1.0%, and 3.0%), C. kousa was determined as one of the sensitive species to $CaCl_2$.

Antimutagenic and Cytotoxic Effects of Kochujang Extracts Added Deep Sea Water Salt and Sea Tangle (해양심층수염 및 다시마분말 첨가 고추장추출물의 항돌연변이성 및 암세포 성장억제효과)

  • Ham, Seung-Shi;Choi, Hyun-Jin;Kim, Soo-Hyun;Oh, Hyun-Taek;Chung, Mi-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.410-415
    • /
    • 2008
  • This study was performed to observe the antimutagenic and cytotoxic activities of methanol extract of kochujang added with sea tangle and deep sea water salts (SDK) and kochujang added with sea tangle (SK) using the Ames test and SRB assay, respectively. The direct antimutagenic effect of SDK and SK methanol extracts were examined by Ames test using Salmonella Typhimurium TA98 and TA100. In the Ames test, methanol extract of SDK and SK alone did not exhibit mutagenicity and most of the samples showed high antimutagenic effects against mutation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline-1-oxide (4NQO). Methanol extract of SDK ($200{\mu}g$/plate) showed approximately 71.4% inhibitory effect on the mutagenesis induced by 4NQO against TA98 strain; whereas 56.1% and 83.6% inhibitions were observed on the mutagenensis induced by 4NQO and MNNG against TA100 strain. The cytotoxic effects of SDK and SK increased with increasing sample concentration against human cervical adenocarcinoma (HeLa), human hepatocellular carcinoma (Hep3B), human breast adenocarcinoma (MCF-7), human stomach adenocarcinoma (AGS), and human lung carcinoma (A549). The SDK at the concentration of 1 mg/ml showed cytotoxicities of 61.5%, 61.3%, 51.4%, 57.9% and 77.7% against HeLa, Hep3B, MCF-7, AGS and A549, respectively. In contrast 1 mg/ml treatment of SDK and SK methanol extract had only $2{\sim}38%$ cytotoxicity on human transformed primary embryonal kidney cell (293).