• Title/Summary/Keyword: High-resolution data

Search Result 2,608, Processing Time 0.028 seconds

Construction of Super-Resolution Convolutional Neural Network Model for Super-Resolution of Temperature Data (기온 데이터 초해상화를 위한 Super-Resolution Convolutional Neural Network 모델 구축)

  • Kim, Yong-Hoon;Im, Hyo-Hyuk;Ha, Ji-Hun;Park, Kun-Woo;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.7-13
    • /
    • 2020
  • Meteorology and climate are closely related to human life. By using high-resolution weather data, services that are useful for real-life are available, and the need to produce high-resolution weather data is increasing. We propose a method for super-resolution temperature data using SRCNN. To evaluate the super-resolution temperature data, the temperature for a non-observation point is obtained by using the inverse distance weighting method, and the super-resolution temperature data using interpolation is compared with the super-resolution temperature data using SRCNN. We construct an SRCNN model suitable for super-resolution of temperature data and perform super-resolution of temperature data. As a result, the prediction performance of the super-resolution temperature data using SRCNN was about 10.8% higher than that using interpolation.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Image Data Processing System for Satellite

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Youn Heong-Sik;Paik Hong Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.486-488
    • /
    • 2004
  • The SRI (Super Resolution Imager) uses the CCD (Charge coupled device) detector that is used to convert the light into electronic data. The purpose of the SRI is to obtain data for high resolution images by converting incoming light into digital stream of pixel data. The SRI has a high resolution, so this electronic system needs more fast imaging data processing, detector control and data transmission systems. This report describes the required system specification and manufactured electronic system for satellite.

  • PDF

Efficient Classification of High Resolution Imagery for Urban Area

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.717-728
    • /
    • 2011
  • An efficient method for the unsupervised classification of high resolution imagery is suggested in this paper. It employs pixel-linking and merging based on the adjacency graph. The proposed algorithm uses the neighbor lines of 8 directions to include information in spatial proximity. Two approaches are suggested to employ neighbor lines in the linking. One is to compute the dissimilarity measure for the pixel-linking using information from the best lines with the smallest non. The other is to select the best directions for the dissimilarity measure by comparing the non-homogeneity of each line in the same direction of two adjacent pixels. The resultant partition of pixel-linking is segmented and classified by the merging based on the regional and spectral adjacency graphs. This study performed extensive experiments using simulation data and a real high resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for object-based analysis and proper land-cover map for high resolution imagery of urban area.

A Study on the Method for Estimating the 30 m-Resolution Daily Temperature Extreme Value Using PRISM and GEV Method (PRISM과 GEV 방법을 활용한 30 m 해상도의 격자형 기온 극값 추정 방법 연구)

  • Lee, Joonlee;Ahn, Joong-Bae;Jeong, Ha-Gyu
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.697-709
    • /
    • 2016
  • This study estimates and evaluates the extreme value of 30 m-resolution daily maximum and minimum temperatures over South Korea, using inverse distance weighting (IDW), parameter-elevation regression on independent slopes model (PRISM) and generalized extreme value (GEV) method. The three experiments are designed and performed to find the optimal estimation strategy to obtain extreme value. First experiment (EXP1) applies GEV firstly to automated surface observing system (ASOS) to estimate extreme value and then applies IDW to produce high-resolution extreme values. Second experiment (EXP2) is same as EXP1, but using PRISM to make the high-resolution extreme value instead of IDW. Third experiment (EXP3) firstly applies PRISM to ASOS to produce the high-resolution temperature field, and then applies GEV method to make high resolution extreme value data. By comparing these 3 experiments with extreme values obtained from observation data, we find that EXP3 shows the best performance to estimate extreme values of maximum and minimum temperatures, followed by EXP1 and EXP2. It is revealed that EXP1 and EXP2 have a limitation to estimate the extreme value at each grid point correctly because the extreme values of these experiments with 30 m-resolution are calculated from only 60 extreme values obtained from ASOS. On the other hand, the extreme value of EXP3 is similar to observation compared to others, since EXP3 produces 30m-resolution daily temperature through PRISM, and then applies GEV to that result at each grid point. This result indicates that the quality of statistically produced high-resolution extreme values which are estimated from observation data is different depending on the combination and procedure order of statistical methods.

Analysis for Accuracy of High Resolution Satellite Data Using Simulation data (시뮬레이션 자료를 이용한 고해상도 인공위성자료의 정확도 분석)

  • Seo Doo-Chun;Lee Dong-Han;Park Su-Young;Song Jeong-Heon;Lim Hyo-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.255-258
    • /
    • 2006
  • With the increasing availability of high-resolution satellite imagery, the demand for ortho-rectified products will also be growing. High-resolution of the imagery (up to 1m) the desired accuracy of the ortho-rectification is more sensitive to a number of factors. including satellite position, velocity, internal sensor error (specifically, misalignment. lens distortion, etc.). sensor modeling, relief displacement and matching error, etc. The main objective of this study is to analysis the accuracy of high resolution satellite data using simulation data.

  • PDF

High Resolution Reconstruction of Multispectral Imagery with Low Resolution (저해상도 Multispectral 영상의 고해상도 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • This study presents an approach to reconstruct high-resolution imagery for multispectral imagery of low-resolution using panchromatic imagery of high-resolution. The proposed scheme reconstructs a high-resolution image which agrees with original spectral values. It uses a linear model of high-and low- resolution images and consists of two stages. The first one is to perform a global estimation of the least square error on the basis of a linear model of low-resolution image associated with high-resolution feature, and next local correction then makes the reconstructed image locally fit to the original spectral values. In this study, the new method was applied to KOMPSAT-1 EOC image of 6m and LANDSAT ETM+ of 30m, and an 1m RGB image was also generated from 4m IKONOS multispectral data. The results show its capability to reconstruct high-resolution imagery from multispectral data of low-resolution.

High resolution size characterization of particulate contaminants for radioactive metal waste treatment

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2277-2288
    • /
    • 2021
  • To regulate the safety protocols in nuclear facilities, radioactive aerosols have been extensively researched to understand their health impacts. However, most measured particle-size distributions remain at low resolutions, with the particle sizes ranging from nanometer to micrometer. This study combines the high-resolution detection of 500 size classes, ranging from 6 nm to 10 ㎛, for aerodynamic diameter distributions, with a regional lung deposition calculation. We applied the new approach to characterize particle-size distributions of aerosols generated during the plasma arc cutting of simulated non-radioactive steel alloy wastes. The high-resolution measured data were used to calculate the deposition ratios of the aerosols in different lung regions. The deposition ratios in the alveolar sacs contained the dominant particle sizes ranging from 0.01 to 0.1 ㎛. We determined the distribution of various metals using different vapor pressures of the alloying components and analyzed the uncertainties of lung deposition calculations using the low-resolution aerodynamic diameter data simultaneously. In high-resolution data, the changes in aerosols that can penetrate the blood system were better captured, correcting their potential risks by a maximum of 42%. The combined calculations can aid the enhancement of high-resolution measuring equipment to effectively manage radiation safety in nuclear facilities.

Applying deep learning based super-resolution technique for high-resolution urban flood analysis (고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Kim, Minyoung;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.641-653
    • /
    • 2023
  • As climate change and urbanization are causing unprecedented natural disasters in urban areas, it is crucial to have urban flood predictions with high fidelity and accuracy. However, conventional physically- and deep learning-based urban flood modeling methods have limitations that require a lot of computer resources or data for high-resolution flooding analysis. In this study, we propose and implement a method for improving the spatial resolution of urban flood analysis using a deep learning based super-resolution technique. The proposed approach converts low-resolution flood maps by physically based modeling into the high-resolution using a super-resolution deep learning model trained by high-resolution modeling data. When applied to two cases of retrospective flood analysis at part of City of Portland, Oregon, U.S., the results of the 4-m resolution physical simulation were successfully converted into 1-m resolution flood maps through super-resolution. High structural similarity between the super-solution image and the high-resolution original was found. The results show promising image quality loss within an acceptable limit of 22.80 dB (PSNR) and 0.73 (SSIM). The proposed super-resolution method can provide efficient model training with a limited number of flood scenarios, significantly reducing data acquisition efforts and computational costs.

Super-Resolution Image Processing Algorithm Using Hybrid Up-sampling (하이브리드 업샘플링을 이용한 베이시안 초해상도 영상처리)

  • Park, Jong-Hyun;Kang, Moon-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.294-302
    • /
    • 2008
  • In this paper, we present a new image up-sampling method which registers low resolution images to the high resolution grid when Bayesian super-resolution image processing is performed. The proposed up-sampling method interpolates high-resolution pixels using high-frequency data lying in all the low resolution images, instead of up-sampling each low resolution image separately. The interpolation is based on B-spline non-uniform re-sampling, adjusted for the super-resolution image processing. The experimental results demonstrate the effects when different up-sampling methods generally used such as zero-padding or bilinear interpolation are applied to the super-resolution image reconstruction. Then, we show that the proposed hybird up-sampling method generates high-resolution images more accurately than conventional methods with quantitative and qualitative assess measures.