DOI QR코드

DOI QR Code

A Study on the Method for Estimating the 30 m-Resolution Daily Temperature Extreme Value Using PRISM and GEV Method

PRISM과 GEV 방법을 활용한 30 m 해상도의 격자형 기온 극값 추정 방법 연구

  • Lee, Joonlee (Division of Earth Environmental System, Pusan National University) ;
  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Jeong, Ha-Gyu (Division of Earth Environmental System, Pusan National University)
  • 이준리 (부산대학교 지구환경시스템학부) ;
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 정하규 (부산대학교 지구환경시스템학부)
  • Received : 2016.09.27
  • Accepted : 2016.10.25
  • Published : 2016.12.31

Abstract

This study estimates and evaluates the extreme value of 30 m-resolution daily maximum and minimum temperatures over South Korea, using inverse distance weighting (IDW), parameter-elevation regression on independent slopes model (PRISM) and generalized extreme value (GEV) method. The three experiments are designed and performed to find the optimal estimation strategy to obtain extreme value. First experiment (EXP1) applies GEV firstly to automated surface observing system (ASOS) to estimate extreme value and then applies IDW to produce high-resolution extreme values. Second experiment (EXP2) is same as EXP1, but using PRISM to make the high-resolution extreme value instead of IDW. Third experiment (EXP3) firstly applies PRISM to ASOS to produce the high-resolution temperature field, and then applies GEV method to make high resolution extreme value data. By comparing these 3 experiments with extreme values obtained from observation data, we find that EXP3 shows the best performance to estimate extreme values of maximum and minimum temperatures, followed by EXP1 and EXP2. It is revealed that EXP1 and EXP2 have a limitation to estimate the extreme value at each grid point correctly because the extreme values of these experiments with 30 m-resolution are calculated from only 60 extreme values obtained from ASOS. On the other hand, the extreme value of EXP3 is similar to observation compared to others, since EXP3 produces 30m-resolution daily temperature through PRISM, and then applies GEV to that result at each grid point. This result indicates that the quality of statistically produced high-resolution extreme values which are estimated from observation data is different depending on the combination and procedure order of statistical methods.

Keywords

References

  1. Ahn, J. B., J. L. Lee, and E. S. Im, 2012: The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction. J. Meteor. Soc. Japan, 90, 493-507. https://doi.org/10.2151/jmsj.2012-404
  2. Ahn, J. B., J. Hur, and A. Y. Lim, 2014: Estimation of finescale daily temperature with 30 m-resolution using PRISM. Atmosphere, 24, 101-110 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.1.101
  3. Ahn, J. B., S. R. Jo, M. S. Suh, D. H. Cha, D. K. Lee, S. Y. Hong, S. K. Min, S. C. Park, H. S. Kang, and K. M. Shim, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236. https://doi.org/10.1007/s13143-016-0021-0
  4. Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol., 3, 396-409. https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
  5. Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374. https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
  6. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33, 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  7. Fisher, R. A., and L. H. C. Tippett, 1928: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge., 24, 180-290. https://doi.org/10.1017/S0305004100015681
  8. Frey, H., and F. Paul, 2012: On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs., 18, 480-490. https://doi.org/10.1016/j.jag.2011.09.020
  9. Hong, K. O., M. S. Suh, D. K. Rha, D. H. Chang, C. Kim, and M. K. Kim, 2007: Estimation of high resolution gridded temperature using GIS and PRISM. Atmosphere, 17, 255-268 (in Korean with English abstract).
  10. Hosking, J. R. M., 1990: L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52, 105-124.
  11. Im, E. S., J. B. Ahn, and S. R. Jo, 2015: Regional climate projection over South Korea simulated by the Had-GEM2-AO and WRF model chain under RCP emission scenarios. Climate. Res., 63, 249-266. https://doi.org/10.3354/cr01292
  12. IPCC, 2013: Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1552pp.
  13. Kim, M. K., M. S. Han, D. H. Jang, S. G. Baek, W. S. Lee, Y. H. Kim, and S. Kim, 2012: Production technique of observation grid data of 1 km resolution. Climate Res., 7, 55-68 (in Korean with English abstract).
  14. Kim, M. K., D. H. Lee, and J. Kim, 2013: Production and validation of daily grid data with 1km resolution in South Korea. Climate Res., 8, 13-25 (in Korean with English abstract).
  15. Park, J. S., and H. S. Jung, 2002: Modelling Korean extreme rainfall using a Kappa distribution and maxi mum likelihood estimate. Theor. Appl. Clim., 72, 55-64. https://doi.org/10.1007/s007040200012
  16. Rider, N. E., J. R. Philip, and E. F. Bradley, 1963: The horizontal transport of heat and moisture-a micrometeorological study. Quart. J. Roy. Meteor. Soc., 89, 506-531.
  17. Schoof, J. T., and S. C. Pryor, 2001: Downscaling temperature and precipitation: a comparison of regression based methods and artificial neural networks. Int. J. Climatol., 21, 773-790. https://doi.org/10.1002/joc.655
  18. Szolgay, J., J. Parajka, S. Kohnova, and K. Hlavcova, 2009: Comparison of mapping approaches of design annual maximum daily precipitation. Atmos. Res., 92, 289-307. https://doi.org/10.1016/j.atmosres.2009.01.009