DOI QR코드

DOI QR Code

Construction of Super-Resolution Convolutional Neural Network Model for Super-Resolution of Temperature Data

기온 데이터 초해상화를 위한 Super-Resolution Convolutional Neural Network 모델 구축

  • Kim, Yong-Hoon (Department of Computer Science, Kwangwoon University) ;
  • Im, Hyo-Hyuk (Korea Oceanic & Atmospheric System Technology) ;
  • Ha, Ji-Hun (IT Division, Korea Oceanic & Atmospheric System Technology) ;
  • Park, Kun-Woo (IT Division, Korea Oceanic & Atmospheric System Technology) ;
  • Kim, Yong-Hyuk (Department of Computer Science, Kwangwoon University)
  • 김용훈 (광운대학교 컴퓨터과학과) ;
  • 임효혁 ((주)한국해양기상기술) ;
  • 하지훈 ((주)한국해양기상기술 IT본부) ;
  • 박건우 ((주)한국해양기상기술 IT본부) ;
  • 김용혁 (광운대학교 컴퓨터과학과)
  • Received : 2020.05.11
  • Accepted : 2020.08.20
  • Published : 2020.08.28

Abstract

Meteorology and climate are closely related to human life. By using high-resolution weather data, services that are useful for real-life are available, and the need to produce high-resolution weather data is increasing. We propose a method for super-resolution temperature data using SRCNN. To evaluate the super-resolution temperature data, the temperature for a non-observation point is obtained by using the inverse distance weighting method, and the super-resolution temperature data using interpolation is compared with the super-resolution temperature data using SRCNN. We construct an SRCNN model suitable for super-resolution of temperature data and perform super-resolution of temperature data. As a result, the prediction performance of the super-resolution temperature data using SRCNN was about 10.8% higher than that using interpolation.

기상과 기후는 인간의 생활과 밀접하게 연관되어 있다. 특히 고해상도 기상 데이터를 활용하여 정밀한 연구나 실생활에 유용한 서비스가 가능하므로, 고해상도 기상·기후 데이터를 생산해야할 필요성이 증가하고 있다. 기존의 고해상도 기상 데이터는 적절한 보간법에 따라 데이터를 생산하지만, 본 논문에서는 SRCNN을 이용하여 기온 데이터를 초해상화 하는 방안을 제안한다. 기온 데이터 초해상화에 가장 적절한 SRCNN 모델을 구축하고, 기온 데이터를 초해상화 한다. 결과 데이터를 평가하기 위해 역거리 가중법을 이용하여 비 관측 지점에 대한 기온을 구하고, 제안한 방법을 적용한 기온 데이터와 보간법을 이용한 기온 데이터를 비교한다. 비교 결과, 기온 데이터를 초해상화하기 위한 적절한 SRCNN 모델을 구축하였고, 제안한 방법이 보간법을 이용한 방법보다 약 10.8% 더 높은 예측 성능을 보였다.

Keywords

References

  1. H. C. Yoo, K. H. Lee & H. G. Kang. (2009). Basic research on the building energy load depending on the climate change in Korea. Journal of the Korean Solar Energy Society, 29(3), 66-72.
  2. B. M. Seo, C. H. Jeon, H. S. Jeon, S. Y. An & H. J. Park. (2019). Implementation of query model of CQRS pattern using weather data. Journal of the Korea Institute of Information and Communication Engineering, 23(6), 645-651. https://doi.org/10.6109/JKIICE.2019.23.6.645
  3. H. S. Hwang, Y. W. Seo, T. G. Jeon & C. S. Kim. (2018). Design and implementation of an urban safety service system using realtime weather and atmosphere data. Journal of Korea Multimedia Society, 21(5), 599-608. https://doi.org/10.9717/KMMS.2018.21.5.599
  4. E. Y. Kim & H. J. Jun. (2011). A study on applicability through comparison of weather data based on micro-climate with existing weather data for building performative design. Journal of the Korea Institute of Ecological Architecture and Environment, 11(6), 101-108.
  5. Y. W. Kim et al. (2017). Design and implementation of a flood disaster safety system using realtime weather big data. Journal of the Korea Contents Association, 17(1), 351-362. https://doi.org/10.5392/JKCA.2017.17.01.351
  6. J. H. Ha, Y. H. Lee & Y. H. Kim. (2016). Forecasting the precipitation of the next day using deep learning. Journal of Korea Institute of Intelligent Systems, 26(2), 93-98. DOI : 10.5391/JKIIS.2016.26.2.093
  7. J. H. Ha, Y. H. Kim, H. H. Im, N. Y. Kim. S. J. Sim & Y. R. Yoon. (2018). Error correction of meteorological data obtained with mini-AWSs based on machine learning. Advances in Meteorology, 2018. DOI : 10.1155/2018/7210137
  8. H. S. Tark, T. Y. Kim, H. G. Cho & H. J. Kim. (2017). A new prediction model for power consumption with local weather information. Journal of the Korea Contents Association, 16(11), 488-498. DOI : 10.5392/JKCA.2016.16.11.488
  9. S. B. Park. (2004). A study on the increase of city temperature in Gwangju by using the of meteorological data. Journal of the Korea Solar Energy Society, 24(3), 65-71.
  10. S. H. Moon, Y. H. Kim, Y. H. Lee & B. R. Moon. (2019). Application of machine learning to an early warning system for very short-term heavy rainfall. Journal of Hydrology, 568, 1042-1054. DOI : 10.1016/j.jhydrol.2018.11.060
  11. J. M. Kim, J. H. Cho & B. Kim. (2016). Correlation between meteorological factors and hospital power consumption. Journal of Digital Convergence, 14(6), 457-466. DOI : 10.14400/JDC.2016.14.6.457
  12. S. O. Chung. (2011). Projecting future paddy irrigation demands in Korea using high-resolution climate simulations. Journal of Korea Water Resources Association, 44(3), 169-177. DOI : 10.3741/JKWRA.2011.44.3.169
  13. C. Dong, C. C. Loy, K. He & X. Tang. (2015). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. DOI : 10.1109/TPAMI.2015.2439281
  14. C. Dong, C. C. Loy & X. Tang. (2016). Accelerating the super-resolution convolutional neural network. In European Conference on Computer Vision, (pp. 391-407). Springer, Cham. DOI : 10.1007/978-3-319-46475-6_25
  15. D. Shepard. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM national conference. (pp. 517-524). DOI : 10.1145/800186.810616
  16. A. Hore & D. Ziou. (2010). Image quality metrics: PSNR vs. SSIM. International conference on pattern recognition. (2366-2369). IEEE. DOI : 10.1109/ICPR.2010.579