References
- H. C. Yoo, K. H. Lee & H. G. Kang. (2009). Basic research on the building energy load depending on the climate change in Korea. Journal of the Korean Solar Energy Society, 29(3), 66-72.
- B. M. Seo, C. H. Jeon, H. S. Jeon, S. Y. An & H. J. Park. (2019). Implementation of query model of CQRS pattern using weather data. Journal of the Korea Institute of Information and Communication Engineering, 23(6), 645-651. https://doi.org/10.6109/JKIICE.2019.23.6.645
- H. S. Hwang, Y. W. Seo, T. G. Jeon & C. S. Kim. (2018). Design and implementation of an urban safety service system using realtime weather and atmosphere data. Journal of Korea Multimedia Society, 21(5), 599-608. https://doi.org/10.9717/KMMS.2018.21.5.599
- E. Y. Kim & H. J. Jun. (2011). A study on applicability through comparison of weather data based on micro-climate with existing weather data for building performative design. Journal of the Korea Institute of Ecological Architecture and Environment, 11(6), 101-108.
- Y. W. Kim et al. (2017). Design and implementation of a flood disaster safety system using realtime weather big data. Journal of the Korea Contents Association, 17(1), 351-362. https://doi.org/10.5392/JKCA.2017.17.01.351
- J. H. Ha, Y. H. Lee & Y. H. Kim. (2016). Forecasting the precipitation of the next day using deep learning. Journal of Korea Institute of Intelligent Systems, 26(2), 93-98. DOI : 10.5391/JKIIS.2016.26.2.093
- J. H. Ha, Y. H. Kim, H. H. Im, N. Y. Kim. S. J. Sim & Y. R. Yoon. (2018). Error correction of meteorological data obtained with mini-AWSs based on machine learning. Advances in Meteorology, 2018. DOI : 10.1155/2018/7210137
- H. S. Tark, T. Y. Kim, H. G. Cho & H. J. Kim. (2017). A new prediction model for power consumption with local weather information. Journal of the Korea Contents Association, 16(11), 488-498. DOI : 10.5392/JKCA.2016.16.11.488
- S. B. Park. (2004). A study on the increase of city temperature in Gwangju by using the of meteorological data. Journal of the Korea Solar Energy Society, 24(3), 65-71.
- S. H. Moon, Y. H. Kim, Y. H. Lee & B. R. Moon. (2019). Application of machine learning to an early warning system for very short-term heavy rainfall. Journal of Hydrology, 568, 1042-1054. DOI : 10.1016/j.jhydrol.2018.11.060
- J. M. Kim, J. H. Cho & B. Kim. (2016). Correlation between meteorological factors and hospital power consumption. Journal of Digital Convergence, 14(6), 457-466. DOI : 10.14400/JDC.2016.14.6.457
- S. O. Chung. (2011). Projecting future paddy irrigation demands in Korea using high-resolution climate simulations. Journal of Korea Water Resources Association, 44(3), 169-177. DOI : 10.3741/JKWRA.2011.44.3.169
- C. Dong, C. C. Loy, K. He & X. Tang. (2015). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. DOI : 10.1109/TPAMI.2015.2439281
- C. Dong, C. C. Loy & X. Tang. (2016). Accelerating the super-resolution convolutional neural network. In European Conference on Computer Vision, (pp. 391-407). Springer, Cham. DOI : 10.1007/978-3-319-46475-6_25
- D. Shepard. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM national conference. (pp. 517-524). DOI : 10.1145/800186.810616
- A. Hore & D. Ziou. (2010). Image quality metrics: PSNR vs. SSIM. International conference on pattern recognition. (2366-2369). IEEE. DOI : 10.1109/ICPR.2010.579