• Title/Summary/Keyword: High-nickel cathode

Search Result 49, Processing Time 0.021 seconds

Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell ($LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF

Electrodeposition of Nickel from Nickel Sulphamate Baths (설파민산 니켈 도금욕에서의 니켈 전착)

  • Lee, Hong-Ro;Lee, Dong-Nyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.3
    • /
    • pp.125-133
    • /
    • 1985
  • About 1 mm thick nickel electrodeposits were obtained from nickel sulphamate baths at 40 to 60$^{\circ}C$ over the range of current densities form 5 to 25 A/$dm^2$. Deposits from above about 1.2V of cathode overpotential had randomly distributed fine grains due to a higher nucleation rate and hence had a high hardness. A deposit obtained at 0.63 V had the [110] orientation with a field oriented fine structure which yield a relatively high hardness. Deposite obtained at the intermediate overpotentials showed the [100] orientation with coarse field oriented structure whose column width tended to decrease with increasing cathode overpotential, which, in turn, gave rise to an increase in hardness. Residual stresses of the deposits measured by X-ray technique were mostly tensile but did not exceed 80 MPa, and were occasionally very small compressive. The cathode current efficiency was above 90% in all the electrolysis conditions, whereas the anode current efficiency varied from 50 to 90% with current density, bath temperature and nickel chloride concentration, among which the chloride was the most influential.

  • PDF

Nickel removal from low permeable kaolin soil under unenhanced and EDTA-enhanced electrokinetic process

  • Asadollahfardi, Gholamreza;Nasrollahi, Mostafa;Rezaee, Milad;Darban, Ahmad Khodadadi
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • This paper represents a set of experimental tests on remediation of nickel-contaminated kaolin by Electrokinetic method. For this purpose, we conducted unenhanced and EDTA-enhanced Electrokinetic tests in one, three, and five days of treatment. In unenhanced tests, we used deionized water as an electrolyte in the anode and the cathode compartments. In the EDTA-enhance tests, we used ethylenediaaminetetra acetic acid 0.1 Molar in the cathode and sodium hydroxide 0.1 Molar in the anode. The average nickel removal for unenhanced tests after three and five days of treatment was 19 and 23 percent, respectively. High buffer capacity of the soil is responsible for low removal efficiency in the unenhanced tests, which maintained pH close to the initial amount that restrained nickel as an adsorbed or precipitated forms. The average nickel removal for EDTA-unenhanced tests after three and five days of treatment was 22 and 12 percent, respectively. Lower ionic mobility of EDTA-Ni complex in comparison with $Ni^{+2}$, which is the main transportation mechanism for this complex, could be responsible for less removal efficiency in EDTA-enhanced test.

DISCHARGE CHARACTERISTICS OF NICKELOXIDE ELECTRODE PREPARED FROM ELECTROCHEMICAL IMPREGNATION

  • Takenoya, K.;Sasaki, Y.;Yamashita, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.363-365
    • /
    • 1999
  • The improved method comprises electrochemically deposition of nickel hydroxide into the sintered nickel plaque cathode from nickel aqueous electrolyte at acid pH in a treating zone containing an anode. The electrochemical impregnation was examined under various conditions. Deposition condition of fine active material was obtained from the impregnation of a high temperature and also high current density. This method also could be decreased swelling and buckling of the plaque. A nickel electrode prepared by electrochemical impregnation is useful as the positive in nickel-cadmium cells. The utilization of the active material indicated almost 100% based on a one electron charge.

  • PDF

A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries (층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구)

  • MinWook, Pin;Beom Tak, Na;Tae Eun, Hong;Youngjin, Kim
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.

Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries (리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구)

  • RYU, HO SUK;KIM, IN SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

Synthesis of Nanosized Nickel Particle from Spent Cathodic Material Containing Lithium

  • Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.340-344
    • /
    • 2019
  • Due to the rapid development of electricity, electronics, information communication, and biotechnology in recent years, studies are actively being conducted on nanopowders as it is required not only for high strengthening but also for high-function powder with electric, magnetic, and optical properties. Nonetheless, studies on nickel nanopowders are rare. In this study of the synthesis of nickel nanoparticles from $LiNiO_2$ (LNO), which is a cathode active material, we have synthesized the nanosized nickel powder by the liquid reduction process of $NiSO_4$ obtained through the leaching and purification of LNO. Moreover, we have studied the reduction reaction rate according to the temperature change of liquid phase reduction and the change of particle size as a function of NaOH addition amount using hydrazine monohydrate ($N_2H_4{\cdot}H_2O$) and NaOH.

Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature

  • Jang, Seol Heui;Mun, Junyoung;Kang, Dong-Ku;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • $LiNi_xCo_yMn_zO_2$ cathode materials have been the focus of much attention because of their high specific capacity. However, because of the poor interfacial stability between cathodes and electrolytes, the cycling performance of these materials fades rapidly, especially at high temperatures. In the present paper, we propose the use of tris(trimethylsilyl) phosphate (TMSPO), which contains phosphate and silyl functional groups, as a functional additive in electrolytes. The addition of TMSPO resulted in the formation of cathode electrolyte interphase (CEI) layers on the surfaces of the cathodes and effectively suppressed electrolyte decomposition reactions, even at high temperatures. As a result, cells cycled with TMSPO exhibited remarkable capacity, which remained after 50 cycles (82.0%), compared to cells cycled without TMSPO (64.6%).

A Study on the Fabrication of Porous Nickel Substrates Using Graphite Powder (흑연분말을 이용한 다공성 니켈지지체의 제조에 관한 연구)

  • 박성용;백지흠;조원일;조병원;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.276-288
    • /
    • 1995
  • A nickel mesh and an expanded nickel sheet were used as a current collector for supporting active materials of cathode in rechargeable batteries, while a porous nickel substrate was extensively studied because of its 3-dimensional structure which has high capabilities for active materials and current collection. Optimum coating conditions were studied by SEM and two step d. c. constant current electrolysis for the graphite coating and electro-plated nickel on an urethane substance which was highly porous and 3-dimensional structure. The density and the porosity of nickel support obtained by using two step current density and 80 ppi urethane substance were 0.38∼0.40 g /㎤ and 94∼96%, respectively. It was possible to fabricate a highly porous and good packable nickel substrate using two step current density and surfactants at sulfamic acid nickel plating bath.

  • PDF

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.