DOI QR코드

DOI QR Code

Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature

  • Jang, Seol Heui (Department of Chemistry, Incheon National University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Kang, Dong-Ku (Department of Chemistry, Incheon National University) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University)
  • Received : 2017.02.22
  • Accepted : 2017.05.13
  • Published : 2017.06.30

Abstract

$LiNi_xCo_yMn_zO_2$ cathode materials have been the focus of much attention because of their high specific capacity. However, because of the poor interfacial stability between cathodes and electrolytes, the cycling performance of these materials fades rapidly, especially at high temperatures. In the present paper, we propose the use of tris(trimethylsilyl) phosphate (TMSPO), which contains phosphate and silyl functional groups, as a functional additive in electrolytes. The addition of TMSPO resulted in the formation of cathode electrolyte interphase (CEI) layers on the surfaces of the cathodes and effectively suppressed electrolyte decomposition reactions, even at high temperatures. As a result, cells cycled with TMSPO exhibited remarkable capacity, which remained after 50 cycles (82.0%), compared to cells cycled without TMSPO (64.6%).

Keywords

References

  1. B. Scrosati, J. Hassoun, Y.-K. Sun, Energy Environ. Sci. 2011, 4, 3287-3295. https://doi.org/10.1039/c1ee01388b
  2. A. Yoshino, Angew. Chem. Int. Ed. 2012, 51, 5798-5800. https://doi.org/10.1002/anie.201105006
  3. J. W. Fergus, J. Power Sources 2010, 195, 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
  4. T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, H.-K. Song, Adv. Energy Mater. 2012, 2, 860-872. https://doi.org/10.1002/aenm.201200028
  5. M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy Environ. Sci. 2012, 5, 7854-7863. https://doi.org/10.1039/c2ee21892e
  6. M. Armand, J.-M. Tarascon, Nature, 2008, 451, 652-657. https://doi.org/10.1038/451652a
  7. D.-J. Lee, B. Scrosati, Y.-K. Sun, J. Power Sources 2011, 196, 7742-7746. https://doi.org/10.1016/j.jpowsour.2011.04.007
  8. S.-H. Lee, C. S. Yoon, K. Amine, Y.-K. Sun, J. Power Sources, 2013, 234, 201-207. https://doi.org/10.1016/j.jpowsour.2013.01.045
  9. W. Cho, S.-M. Kim, K.-W. Lee, J. H. Song, Y. N. Jo, T. Yim, H. Kim, J.-S. Kim, Y.-J. Kim, Electrochim. Acta 2016, 198, 77-83. https://doi.org/10.1016/j.electacta.2016.03.079
  10. J. M. Park, D. Kim, H. B. Kim, J. H. Bae, Y.-J. Lee, J. I. Myoung, E. Hwang, T. Yim, J. H. Song, J.-S. Yu, J. H. Ryu, J. Korean Electrochem. Soc. 2016, 19, 80-86. https://doi.org/10.5229/JKES.2016.19.3.80
  11. S.-J. Yoon, S.-T. Myung, Y.-K. Sun, J. Electrochem. Soc. 2014, 161, A1514-A1520. https://doi.org/10.1149/2.0121410jes
  12. B.-B. Lim, S.-T. Myung, C. S. Yoon, Y.-K. Sun, ACS Energy Lett. 2016, 1, 283-289. https://doi.org/10.1021/acsenergylett.6b00150
  13. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 4440-4457. https://doi.org/10.1002/anie.201409262
  14. Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto, Z. Ogumi, Chem. Mater. 2012, 24, 3886-3894. https://doi.org/10.1021/cm3018314
  15. H. J. Yu, Y. M. Qian, M. R. Otani, D. M. Tang, S. H. Guo, Y. B. Zhu, H. S. Zhou, Energy Environ. Sci. 2014, 7, 1068-1078. https://doi.org/10.1039/c3ee42398k
  16. K. S. Kang, S. Choi, J. Song, S.-G. Woo, Y. N. Jo, J. Choi, T. Yim, J.-S. Yu, Y.-J. Kim, J. Power Sources 2014, 253, 48-54. https://doi.org/10.1016/j.jpowsour.2013.12.024
  17. T. Yim, K. S. Kang, J. Mun, S. H. Lim, S.-G. Woo, K. J. Kim, M.-S. Park, W. Cho, J. H. Song, Y.-K. Han, J.-S. Yu, Y.-J. Kim, J. Power Sources 2016, 302, 431-438. https://doi.org/10.1016/j.jpowsour.2015.10.051
  18. Y.-M. Song, C.-K. Kim, K.-E. Kim, S. Y. Hong, N.-S. Choi, J. Power Sources 2016, 302, 22-30. https://doi.org/10.1016/j.jpowsour.2015.10.043
  19. B. Koo, J. Lee, Y. Lee, J. K. Kim, N.-S. Choi, Electrochim. Acta 2015, 173, 750-756. https://doi.org/10.1016/j.electacta.2015.05.129
  20. Y.-K. Han, J. Yoo, T. Yim, Electrochim. Acta 2016, 215, 455-465. https://doi.org/10.1016/j.electacta.2016.08.131
  21. Y.-K. Han, J. Yoo, T. Yim, J. Mater. Chem. A 2015, 3, 10900-10909. https://doi.org/10.1039/C5TA01253H
  22. T. Yim, S.-G. Woo, S. H. Lim, W. Cho, J. H. Song, Y.-K. Han, Y.-J. Kim, J. Mater. Chem. A, 2015, 3, 6157-6167. https://doi.org/10.1039/C4TA06531J
  23. N. N. Sinha, J. C. Burns, J. R. Dahn, J. Electrochem. Soc. 2014, 161, A1084-A1089. https://doi.org/10.1149/2.087406jes
  24. J. Zhang, J. Wang, J. Yang, Y. NuLi, Electrochim. Acta 2014, 117, 99-104. https://doi.org/10.1016/j.electacta.2013.11.024
  25. G. Yan, X. Li, Z. Wang, H. Guo, C. Wang, J. Power Sources 2014, 248, 1306-1311. https://doi.org/10.1016/j.jpowsour.2013.10.037
  26. T. Yim, S. H. Kim, S.-G. Woo, K. Lee, J. H. Song, W. Cho, K. J. Kim, J.-S. Kim, Y.-J. Kim, RSC Adv. 2014, 4, 19172-19176. https://doi.org/10.1039/c4ra01441c
  27. E. Pretsch, P. Buhlmann, C. Affolter, Structure Determination of Organic Compounds, Springer, Germany, 2000.
  28. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  29. G. Sarre, P. Blanchard, M. Broussely, J. Power Sources 2004, 127, 65-71. https://doi.org/10.1016/j.jpowsour.2003.09.008