• Title/Summary/Keyword: High-lift system

Search Result 236, Processing Time 0.027 seconds

A Study on Performance Characteristics of Small Airlift Pump (소형 에어리프트 펌프의 성능특성에 관한 연구)

  • Oh, S.K.;Lee, G.Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.34-39
    • /
    • 2000
  • Performance data in the literature on air lift pumps have been based primarily on pumps of long length and large diameter (high lift pumps). Since mariculture operations involve pumps of relatively short length and small diameter, performance data are required for efficient operation. To provide such data, an experimental apparatus was designed and fabricated to test all lift pumps from 2.1 to 3.4 cm inside diameter and from 40 to 300 cm in length. Instrumentation was provided to measure water flow rate and air flow rate as well as water temperature, air temperature, and pressure throughout the system. Results from this study correlate well with high lift pump data in that, for a given pump geometry, maximum water flow occurs for a specific air flow rate. Driving the pump with air flows larger or smaller than this optimum flow rate will decrease the pumping rate. The optimum flows are significantly different for low lift pumps compared to high lift pumps. However, the pumping rate for low lift pumps approaches that for high lift pumps with increasing length.

  • PDF

Optimization of Flap Shape and Position for Two-dimensional High Lift Device (2차원 고양력장치의 플랩 형상 및 위치 최적화)

  • Park, Youngmin;Kang, Hyoungmin;Chung, Jindeog;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

Development of An Optimal Call-response Algorithm of Construction Lift for High-rise Building Construction (초고층 건설용 리프트의 최적 호출 응답 알고리즘 개발)

  • Ahn, Heejae;Lee, Dongmin;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.6-7
    • /
    • 2018
  • Although the importance of the construction lift is increasing, no improvements are being made to its operating system. This study proposed an optimal call-response algorithm of the construction lift for high-rise building construction by using image sensing technology, height measuring sensor, and load cell. This algorithm makes turn-around decision of the construction lift by considering the information and the number of user. It occurs when the call comes from a floor where the construction lift already have passed. The purpose of this study is to reduce the total latency of the construction lift user. Furthermore, it is possible to prevent delay in construction duration by carrying out a priority operation of the construction lift for the critical workforce.

  • PDF

A Study on the Design and Development of the Power Transmission System for Lift Truck (지게차 전용 동력전달시스템의 설계 및 개발에 관한 연구)

  • Jang, Kyoung-Yeol;Park, Joong-Sun;Yoo, Woo-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.34-43
    • /
    • 2009
  • In this thesis, we explain developing processes of the power transmission system for lift truck. Conventional power transmission system had some problems such as spatial constraints or low speed and high torque problem. Because conventional power transmission system was mainly designed for high speed vehicles. In this paper we developed power shift drive axle specialized for $2.0{\sim}3.5$ ton lift truck. Innovative structure of transmission which is built in inside axle, enables to reduce system weight and size by 40% compared to the conventional power transmission system. Also, it is possible to do additional functions such as auto parking system and anti-roll back system.

Super-Lift DC-DC Converters: Graphical Analysis and Modelling

  • Zhu, Miao;Luo, Fang Lin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.854-865
    • /
    • 2009
  • Super-lift dc-dc converters are a series of advanced step-up dc-dc topologies that provide high voltage transfer gains by super-lift techniques. This paper presents a developed graphical modelling method for super-lift converters and gives a thorough analysis with a consideration of the effects caused by parasitic parameters and diodes' forward voltage drop. The general guidelines for constructing and deriving graphical models are provided for system analysis. By applying it to examples, the proposed method shows the advantages of high convenience and feasibility. Both the circuit simulation and experimental results are given to support the theoretical analysis.

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

The Aerodynamic Analysis of Pantograph of the Next Generation High Speed Train (차세대 고속철도 판토그래프의 공력특성 해석)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Yoon, S.H.;Kwon, H.B.;Park, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.362-367
    • /
    • 2011
  • The aerodynamic performance of the pantograph of the next generation high sped train is analyzed. The calculation of the flow around pantograph is carried cut by FLUENT; by the steady state flow calculation with ${\kappa}-{\omega}$ SST turbulence model, the lift force of the pantograph is computed. For the verification of the numerical schemes am grid systems, flow calculations are performed with the pantograph shape which was used at the experiments performed at Railway Technical Research Institute (RTRI) in Japan. Then, the difference of lift force between numerical am experimental results is about 10%. Therefore, selected numerical schemes and the current grid system is adequate for the analysis am prediction of the aerodynamic performance of panthograph system. Based on these numerical schemes am grid system, the flow around pantograph of the next generation high sped train is calculated and the lift force of the pantograph is predicted; the lift force of the pantograph is about 146N.

  • PDF

AERODYNAMIC OPTIMIZATION OF MULTI-ELEMENT AIRFOILS FOR LIFT ENHANCEMENT (다중 익형 주위의 고양력을 위한 위치 최적화)

  • Lee, Dae-Il;Choi, Byung-Chul;Park, Young-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.441-446
    • /
    • 2011
  • To investigate aerodynamic performance of high-lift devices, 2D design is the base of the success of high-lift system design for transport aircraft, which can shorten the periods of three-dimensional design and analysis. For the simulation coupled viscous and inviscous euler method (MSES) is used. In this parametric study, Gap and Overlap which can define position of flap is used as design variables and we investigale relation between angle of attack and flap position for lift enhancement.

  • PDF

Development of Optimum Construction Lift Operation System using Sensing Information for High-rise Building (센싱정보를 활용한 초고층 건설용 리프트 최적화 운행 시스템 개발)

  • Shin, Joong-Hwan;Kwon, Soon-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.153-163
    • /
    • 2013
  • As recent buildings have been more higher and larger, construction vertical lifting planning and operation is a key factor for successful project in tall building. Although many studies have been trying to set up a construction lifting planning system at early stage, there's not existing a control real-time lift operation control system with respect to during construction stage. Therefore, In this study, we use the sensor device to collect the lift operating data for improvement of lift operation efficiency and develope optimum lift operating system which can perform real-time analysis. Finally, we verify the efficiency of proposed system through comparison between realtime operating data and simulated data using proposing system. In this paper, the proposed system show more efficient moving line compared with previous system. This can contribute to development of unmanned lift system.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.