• Title/Summary/Keyword: High-frequency switching converter

Search Result 553, Processing Time 0.034 seconds

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

Performance of an SiC-MOSFET Based 11-kW Bi-directional On-board Charger (SiC-MOSFET 기반 11-kW급 양방향 탑재형 충전기 성능)

  • Lee, Sang-Youn;Lee, Woo-Seok;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.376-379
    • /
    • 2021
  • The design and performance of a SiC-MOSFET-based 11-kW bi-directional on-board charger (OBC) for electric vehicles is presented. The OBC consists of a three-phase two-level AC/DC converter and a CLLLC resonant converter. All the power devices are implemented with SiC-MOSFETs to reduce the conduction losses generated in the OBC, and the DC-link voltage is designed to track the level of battery voltage in the forward and reverse powering modes. As a result, the CLLLC resonant converter always runs at the switching frequency near the resonant frequency, resulting in high-efficiency operation at the maximum powering modes. As the DC-link voltage varies according to the battery voltage, the AC/DC converter in the proposed OBC adopts an adaptive DC-link voltage controller. The performance of the proposed 11-kW OBC is verified by a prototype converter with the following specifications: three-phase 60-Hz 380-V input, 11-kW capacity, and battery voltage range of 214-413-V, resulting in the conversion efficiency of over 95.0-% in the forward and reverse powering modes.

A New PWM-Controlled Quasi-Resonant Converter for a High Efficiency PDP Sustaining Power Module

  • Lee, Woo-Jin;Choi, Seong-Wook;Kim, Chong-Eun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • A new PWM-controlled quasi-resonant converter for a high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with a bi-directional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stresses of power switches. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

High-Efficiency CMOS PWM DC-DC Buck Converter (고효율 CMOS PWM DC-DC 벅 컨버터)

  • Kim, Seung-Moon;Son, Sang-Jun;Hwang, In-Ho;Yu, Sung-Mok;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.398-401
    • /
    • 2011
  • This paper presents a high-efficiency CMOS PWM DC-DC buck converter. It generates a constant output voltage(1-2.8V), from an input voltage(3.4-3.9V). Inductor-based type is chosen and inductor current is controlled with PWM operation. The designed circuit consists of power switch, Pulse Width Generation, Buffer, Zero Current Sensing, Current Sensing Circuit, Clock & Ramp generation, V-I Converter, Soft Start, Compensator and Modulator. Switching Frequency is 1MHz, It operates in CCM when the load current is more than 40mA, and the maximum efficiency is 98.71% at 100mA. Output voltage ripple is 0.98mV(input voltage:3.5V, output voltage:2.5V). The performance of the designed circuit has been verified through extensive simulation using a CMOS $0.18{\mu}m$ technology.

  • PDF

A Prototype Development of Personal Low-frequency Stimulator with Characteristic Analysis (개인용 저주파 자극기의 특성분석 및 Prototype개발)

  • Lee, Gi-Song;Lee, Dong-Ha;Yu, Jae-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.349-352
    • /
    • 2003
  • A personal low-frequency stimulator is a portable device to relax muscle pains of a person. The stimulator generates combined low-frequency pulses to be applied to pads attached to painful muscles. This paper reports a development of such device with its characteristic analyses. The major components of our stimulator are MCU, high-voltage generating circuit part, high-voltage switching circuit part, input switch part and display unit. High-voltage generating circuit is designed by using a boost converter circuit and allows user control of the output voltage. High-voltage switching circuit, controlled by MCU, generates output voltage to be applied to pads. Input switch part is composed of power supply, intensity selection, mode selection and memory. Display unit adopts a text LCD module to display modes, Intensity, output frequency and user set-up time. Our designed safety circuit, to protect human body from possible electric shock, slowly increases the output voltage to the selected output intensity. It continuously checks the output pulse shape and disable the output when dangerous pulses are detected. This paper also shows some experimental results.

  • PDF

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.

MODELING OF QUANTUM CONVERTERS (Quantum 콘버어터의 모델링)

  • Joung, Gyu-B.;Rim, Chun-T.;Cho, Gyu.-H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.151-154
    • /
    • 1988
  • Quantum converters, a subset of resonant converters operating with optimal conditions are modeled. It is shown that series resonant converter(SRC) can be modeled as buck/boost converter with an equivalent inductor and parallel resonant converter(PRC) can be modeled as Cuk converter, with an equivalent capacitor. Also new resonant circuits with boost, buck-boost and Cuk converter characteristics are proposed. From these models, the quantum converters can be designed to be controlled with closed loop feedback, having many advantages such as low device switching stress, reliable high frequency operation and low EMI.

  • PDF

A Study on the Miniaturization of e-Mobility Battery Charger Module Using GaN-FET (GaN-FET을 이용한 e-Mobility 배터리용 충전기 모됼의 소형화에 관한 연구)

  • Kim, Sun-Pil;Lee, Chang-Ho;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.919-926
    • /
    • 2021
  • In this paper, a study was conducted on the miniaturization of an e-Mobility battery charger module using GaN-FET. GaN-FET is one of the types of WBG devices, and it is a device that exceeds the performance of existing Si power semiconductors. In particular, GaN-FET has the advantage of small packaging size and high switching frequency operation, which is advantageous for miniaturization of power converters. Therefore, a bidirectional DC/DC converter module for e-mobility charging using GaN-FET was developed. To apply to the converter to be developed, analysis is performed on the characteristics of GaN-FET, and after manufacturing a prototype of a bidirectional DC/DC converter module, the efficiency and temperature data of the power converter are analyzed to verify its feasibility.

A Single-phase Buck-boost AC-AC Converter with Three Legs

  • Zhou, Min;Sun, Yao;Su, Mei;Li, Xing;Liu, Fulin;Liu, Yonglu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.838-848
    • /
    • 2018
  • This paper proposes a single-phase buck-boost AC-AC converter. It consists of three legs with six switching units (each unit is composed of an active switch and a diode) and its input and output ports share a common ground. It can provide buck-boost voltage operation and immune from shoot-through problem. Since only two switching units are involved in the current paths, the conduction losses are low, which improves the system efficiency. The operation principle of the proposed circuit is firstly presented, and then, various operation conditions are introduced to achieve different output voltages with step-changed frequencies. Additionally, the parameters design and comparative analysis of the power losses are also given. Finally, experimental results verify the correctness of the proposed converter.