• Title/Summary/Keyword: High-flowable concrete

Search Result 36, Processing Time 0.021 seconds

A Study on Basic Properties of Super Early Strength Self Compacting Concretes( I ) (속경성 자기충전 콘크리트의 기초특성 연구( I ))

  • 엄태선;임채용;유재상;이종열;이근호;한재명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • We carried out the feasibility study of super early self compacting concrete having the characteristics of 1 day demoulding without steam curing, high flowable concrete with self compacting, high strength and high durability etc. Here, We test and selected by several methods using high early cement with and without admixtures for the condition of super early strength self compacting concrete's manufacture (SSCC). we sucessed to meet at the goal of SSCC with 20-35N/mm$^2$ at 1 day, without steam curing and with slump flow about 60-65cm. We continue to search the effectual conditions of SSCC's manufacture by changing mix designs, several of admixture (superplasticizer, stabilising agent), slag, fly ash, high early cement and apply the products for practical use.

  • PDF

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

A Fundamental Study on Very High Strength and High Flowable Concrete using Industrial By-products (산업부산물을 활용한 고유동화 초고강도 콘크리트의 기초물성 및 동결융해특성)

  • 김병권;이석홍;정하선;이영남;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.707-714
    • /
    • 2001
  • This paper presents the fundamental study on rational manu(acture of Very High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the VHS concrete(target compressive strength : over 1,000 kgf/$cm^{2}$) which is easily workable (target slump flow : 60$\pm$l0cm), The main variables studied are; 1) test variables to find the optimum replacement ratio of mineral admixture, 2) test variables to find a rational water-binder ratio, a proper binder content, 3) test variables to find the method for reduction of slump loss, 4) test variables to know the influence of air entrainment on frost resistance. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume, and water reducing agent(slump loss reduction type). We found that it is unnecessary to entrain air for freeze-thawing resistance.

  • PDF

A Study on the Properties of High Performance Concrete using High Flowable Cement (고유동 시멘트를 사용한 고성능 콘크리트특성에 관한 연구)

  • 최광일;현석훈;박춘근;강민호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.290-294
    • /
    • 1996
  • High-Belite cement had a better slump flow characteristics than type I cement and slag cement, and its varation of slump flow with time was also excellent. As the amount binder added was increased, the strength increased while material separation decreased. This phenomena was obvious when the amount of cement was abobe 500kg/$\textrm{m}^3$ . When the amount of cement and S/a were 516kg/$\textrm{m}^3$ and 52% respectively, the application strength of 600kg/$\textrm{m}^3$ was satisfied. Since, however, the aggreate size of 25mm was somewhat unsatisfactory, the characteristics of high performance concrete could be obtained by the addition of the viscosity-enhancing agent.

  • PDF

An experimental study on mix design for flowable fill with high volume fly ash content (다량의 플라이애쉬를 사용한 고유동충진재의 배합설계를 위한 실험적 연구)

  • 원종필;신유길
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.130-135
    • /
    • 1998
  • This paper presents results of research performed to identify optimum mix proportions for production of flowable fill with high volume fly ash content. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. Tests were carried out on concrete designed to have 10 ~ 15kg/$\textrm{cm}^2$ compressive strength at the 28-day age with fly ash contents of approximately 280kg/㎥. Slump was held at 25$\pm$1cm for all mixtures produced compressive strengths at 28 days were found to range from 5.03 to 13.69kg/$\textrm{cm}^2$.

  • PDF

An Experimental Study on Extimation for Formwork Pressures with High Flowable Concrete (고유동콘크리트의 거푸집측압 예측을 위한 실험적 연구)

  • 김종우;이대근;김기수;강지훈;이영욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • The design of formwork system for vertical form faces is controlled by pressures predicted to act against the formwork by fresh concrete. An overestimation of pressure results in heavy, and ex-pensive formwork. An underestimation results in malformed structure, of in some cases, it causes the failure of the formwork. This study is a preliminary step in determination lateral pressures with High folwable concrete. To estimate lateral formwork pressures, we measured tensile strain of formtie in the movable part of the form. From the experimental results maximum lateral pressure and the location at which maximum pressures occurs, were determined. The experimental results are compared with the results predicted by the Gardner & Qureshi's proposed equation and the accepted Korean Standard Specification for concrete and ACI equation.

  • PDF

Effect of Substrate Surface Water on Adhesive Properties of High Flowable VA/VeoVa-modified Cement Mortar for Concrete Patching Material (단면수복용 고유동성 VA/VeoVa 개질 시멘트 모르타르의 부착특성에 대한 피착면 표면수의 영향)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.94-104
    • /
    • 2013
  • Experiments were divided into two parts; one part is to understand the basic properties of high flowable VA/VeoVa-modified cement mortar with different polymer cement ratio (P/C) and the weight ratio of fine aggregate to cement (C:F) and the other part is to investigate the effect of surface water spread on the concrete substrate on adhesion in tension. To understand the basic performance, the specimens were prepared with proportionally mixing VA/VeoVa redispersible powder, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Here, P/C were 10, 20, 30, 50 and 75% and C:F were 1:1 and 1:3. As the change of P/C and C:F unit weight, flow test, crack resistance and adhesion in tension were measured. Three specimens with good adhesion properties were selected among specimens with different P/C and C:F. The effect of surface water evenly sprayed on concrete substrate on adhesive strength is investigated. The results show that surface water on concrete substrate increases the adhesion in tension of high flowable VA/VeoVa-modified cement mortar and additionally improves the flowability compared to the non-sprayed case.

The Fundamental Properties and Planting Experiments on the Concrete with Continuous voids (다공성콘크리트의 기초적 특성과 녹화실험)

  • 김진춘;김기수;최광일;오희갑
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.153-159
    • /
    • 1996
  • The concrete with continuous voids (No Fine Concrete ; NFC) is the new planting material which may be used for stabilizing the sandy slope of river or road sides. The components of NFC are mainly coarse aggregate and low alkali cement paste, so to speak fine aggregate is not used. This report shows the fundamental properties of NFC, such as continous void ratio, compressive strength, permeability. As experimental results we can get the good quality of NFC, that is about 28% continuous void ratio, about 120kg/$\textrm{cm}^2$ compressive strength and high flowable permeability. And also planting grass and garden portulaca on the concrete with continuous voids is resulted in success.

  • PDF

Properties of Foamed Concrete According to Concentrations of Synthetic Type Foaming Agents (합성 기포제 희석 농도에 따른 기포콘크리트의 특성)

  • Choi, Ji-Ho;Shin, Sang-Chul;Park, Hyo-Jin;Kim, Ji-Ho;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.123-125
    • /
    • 2011
  • Pre-foaming that has been used in this study is using to control and guarantee quality, but the optimum mix proportion and regulation are not definite. Therefore, this study investigated properties of foamed concrete according to concentrations of foaming agent to improve usability of foamed concrete. Synthetic foaming agent such as AES(Alkyl Ether Sulfate) and AOS(Alpha Olefin Sulfonate) are used to make foam with 1, 3, and 5% concentrations. We found that the flow of foam concrete increases when foam concentration is high and AES is more flowable than AOS. Density and compressive strength increase when foam concentration is low.

  • PDF