• Title/Summary/Keyword: High-field MRI

Search Result 146, Processing Time 0.029 seconds

EM Algorithm-based Segmentation of Magnetic Resonance Image Corrupted by Bias Field (바이어스필드에 의해 왜곡된 MRI 영상자료분할을 위한 EM 알고리즘 기반 접근법)

  • 김승구
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.305-319
    • /
    • 2003
  • This paper provides a non-Bayesian method based on the expanded EM algorithm for segmenting the magnetic resonance images degraded by bias field. For the images with the intensity as a pixel value, many segmentation methods often fail to segment it because of the bias field(with low frequency) as well as noise(with high frequency). Our contextual approach is appropriately designed by using normal mixture model incorporated with Markov random field for noise-corrective segmentation and by using the penalized likelihood to estimate bias field for efficient bias filed-correction.

High-temperature superconductors for NMR/MRI magnets:opportunities and challenges

  • Iwasa, Yukikazu;Bascunan, Juan;Hahn, Seungyong;Yao, Weijun
    • Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The unique features of HTS offer opportunities and challenges to a number of applications. In this paper we focus on NMR and MRI magnets, illustrating them with the NMR/MRI magnets that we are currently and will shortly be engaged: a 1.3 GHz NMR magnet, an "annulus" magnet, and an $MgB_2$whole-body MRI magnet. The opportunities with HTS include: 1) high fields (e.g., 1.3 GHz magnet); 2) compactness (annulus magnet); and 3) enhanced stability despite liquid-helium-free operation ($MgB_2$whole-body MRI magnet). The challenges include: 1) a large screening current field detrimental to spatial field homogeneity (e.g., 1.3 GHz magnet); 2) uniformity of critical current density (annulus magnet); and 3) superconducting joints ($MgB_2$magnet).

  • PDF

Clinical Applications of Breast MRI (유방자기공명영상의 임상 적용)

  • Cho, Nariya;Moon, Woo-Kyung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Breast MRI is a cutting-edge technology in the diagnosis and intervention of breast abnormalities. Over the last decade, breast MRI has evolved from a research field to a clinical field. Radiologists should understand the indications, how to obtain adequate images, and how to interpret and report their findings. Breast MRI is now used in the differentiation of benign from malignant mass, preoperative staging of breast cancer patients, assessment of tumor response to neoadjuvant chemotherapy, and evaluation of women with breast implants. It can also be used as a supplemental screening modality for high-risk women. Qualified radiologists and adequate MRI technique are crucial for the success of these purposes. This review is focused on the indication, standardized use of lexicon and categorization of breast MRI.

  • PDF

B1+ Comparison for Different RF Coils at 7 T MRI (7 T MRI에서의 다양한 RF 코일에 대한 B1+ 비교)

  • Kim, Hong-Joon;Yoo, Hyoung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1010-1013
    • /
    • 2012
  • This paper demonstrates the use of the convex optimization to localize the transverse magnetic $B_1^+$ field in regions of interest for recently proposed multi-sectioned alternating impedance coils and the traditional transmission line coil. An approach based on different axial slices to identical RF coils except upper stripline structure is investigated. Electromagnetic simulation results are compared for RF coils and discussed in detail at 7.0 T.

Discretized solenoid design of a 1.5 T and a 3.0 T REBCO whole-body MRI magnets with cost comparison according to magnetic flux

  • Wonju Jung;Geonyoung Kim;Kibum Choi;Hyunsoo Park;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.75-80
    • /
    • 2023
  • Rare earth barium copper oxide (REBCO) materials have shown the possibility of high-temperature superconductor (HTS) magnetic resonance imaging (MRI) magnets due to their elevated transition temperature. While numerous MRI magnet designs have emerged, there is a growing emphasis on estimating the cost before manufacturing. In this paper, we propose two designs of REBCO whole-body MRI magnets: (1) 1.5 T and (2) 3.0 T, the standard center field choices for hospital use, and compare their costs based on conductor usage. The basis topology of the design method is based on discretized solenoids to enhance field homogeneity. Magnetic stress calculation is done to further prove the mechanical feasibility of their construction. Multi-width winding technique and outer notch structure are used to improve critical current characteristic. We apply consistent constraints for current margins, sizes, and field homogeneities to ensure an equal cost comparison. A graph is plotted to show the cost increase with magnetic flux growth. Additionally, we compare our designs to two additional MRI magnet designs from other publications with respect to the cost and magnetic flux, and present the linear relationship between them.

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

High-field MRI

  • 이흥규
    • Proceedings of the KSMRM Conference
    • /
    • 1998.03a
    • /
    • pp.43-46
    • /
    • 1998
  • PDF

Study on fabricated RF coil using high-temperature superconductor tape and matching circuit for low field MRI system (고온초전도 선재와 정합회로를 이용한 RF coil 제작에 대한 기초연구)

  • Kim, D.H.;Ko, R.K.;Kang, B.M.;Ha, D.W.;Sohn, M.H.;Mun, C.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The substantial improvement of the signal-to-noise ratio (SNR) can be achieved with small-size samples or low-field MRI system by high-temperature superconducting(HTS) RF coil. The typical HTS RF coil made of HTS thin film is expensive and is limited the coil geometry to planar surface coil. In this study, commercial Bi-2223 HTS tapes was used as RF coil for a 0.35T permanent MRI system. It has advantages of both much lower cost and easier fabrication over HTS thin film coil. SNR gain of the image obtained from the HTS RF coil over a conventional Cu RF coil at room temperature was about 2.4-fold and 1.9-fold using the spin echo pulse sequence and gradient echo pulse sequence respectively.

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.

A study on the reproducibility of hippocampal volumes measured using magnetic resonance images of different magnetic field strengths and slice orientations (자장 세기와 스캔 방향이 다른 자기공명영상에서 측정된 해마 체적의 재현성 연구)

  • Choi, Yu Yong;Lee, Dong Hee;Lee, Sang Woong;Lee, Kun Ho;Kwon, Goo Rak
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.44-48
    • /
    • 2016
  • In a longitudinal neuroimaging study, the upgrades of a magnetic resonance imaging (MRI) scanner due to outdated hardwares and softwares make it difficult to maintain the same MRI conditions in the long-term research period. Particularly, high field MRI systems such 3T scanners become popular in recent years. However, it is still unclear whether an integrated analysis of 3T and 1.5T images is possible without consideration of the field strength. In this study, we evaluated the reproducibility of hippocampal volumes between brain images with different field strengths and slice orientations. 296 participants underwent both 3T and 1.5T MRI and both sagittal and axial scans for high resolution brain images, and their hippocampal volumes were measured using Freesurfer, a well-known software for neuroimaging analysis. Paired t-tests showed that the hippocampal volumes were significantly different between the image types. These results suggest that it is necessary to develop data analysis techniques for integrating diverse types of MRI images.