• Title/Summary/Keyword: High-efficient power

Search Result 1,339, Processing Time 0.03 seconds

A Study on Performance Evaluation of a Vertically Closed Deep Geothermal Circulation Simulator (수직 밀폐형 심부지열 순환 시뮬레이터의 성능 평가에 관한 연구)

  • Bae, Jung-Hyeong;Lee, Dong-Woon;Yoon, Chung-Man;Ryoo, Yeon-Su;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.8-17
    • /
    • 2016
  • While greenhouses have been utilized as a sustainable alternative to traditional soil farming, they are often powered by diesel boilers that necessitate vast amounts of non-renewable energy and emit toxic fumes. Thus, geothermal heat pumps have been proposed as a more energy-efficient substitution for diesel boilers. Currently, most horticultural facilities in the United States use shallow geothermal systems, and are often equipped with horizontal underground heat exchangers as well as heat pump equipment. These shallow geothermal systems require a large drilling site and heat pump to function, which results in high maintenance costs. The heat pump itself consumes a large amount of power, which degrades system performance. Conversely, high temperatures can be attained within a single borehole in deep geothermal vertical closing systems without using a heat pump. This setup can dramatically reduce the power consumption and improve system performance. In this study, we have modeled a circulation simulator after the circulation systems in deep geothermal facilities to analyze a 2000-meter borehole in Naju-Sanpo-myeon. The simulator is operated by manipulating various putative parameters affecting system performance to analyze the system's coefficient of performance.

Effect of Hydraulic Pressure on Organic Fouling in Pressure Retarded Osmosis (PRO) Process (압력지연삼투 (PRO) 공정에서 유도용액에서의 압력이 유기물 파울링에 미치는 영향)

  • Suh, Dongwoo;Yoon, Hongsik;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.133-138
    • /
    • 2015
  • Pressure retarded osmosis (PRO) process is one of membrane processes for harvesting renewable energy by using salinity difference between feed and draw solutions. Power is generated by permeation flux multiplied by hydraulic pressure in draw side. Membrane fouling phenomena in PRO process is presumed to be less sever, but it is inevitable. Membrane fouling in PRO process decreases water permeation through membrane, resulting in significant power production decline. This study intended to investigate the effect of hydraulic pressure in PRO process on alginate induced organic fouling as high and low hydraulic pressures (6.5 bar and 12 bar) were applied for 24 h under the same initial water flux. In addition, organic fouling in draw side from the presence of foulant (sodium alginate) in draw solution was examined. As major results, hydraulic pressure was found to be not a significant factor affecting in PRO organic fouling as long as the same initial water flux is maintained, inidicating that operating PRO process with high hydraulic pressure for efficient energy harvesting will not cause severe organic fouling. In addition, flux decline was negligible from the presence of organic foulant in draw side.

Study on the $N_2$ Plasma Treatment of Nanostructured $TiO_2$ Film to Improve the Performance of Dye-sensitized Solar Cell

  • Jo, Seul-Ki;Roh, Ji-Hyung;Lee, Kyung-Joo;Song, Sang-Woo;Park, Jae-Ho;Shin, Ju-Hong;Yer, In-Hyung;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.337-337
    • /
    • 2012
  • Dye sensitized solar cell (DSSC) having high efficiency with low cost was first reported by Gr$\ddot{a}$tzel et al. Many DSSC research groups attempt to enhance energy conversion efficiency by modifying the dye, electrolyte, Pt-coated electrode, and $TiO_2$ films. However, there are still some problems against realization of high-sensitivity DSSC such as the recombination of injected electrons in conduction band and the limited adsorption of dye on $TiO_2$ surface. The surface of $TiO_2$ is very important for improving hydrophilic property and dye adsorption on its surface. In this paper, we report a very efficient method to improve the efficiency and stability of DSSC with nano-structured $TiO_2$. Atmospheric plasma system was utilized for nitrogen plasma treatment on nano-structured $TiO_2$ film. We confirmed that the efficiency of DSSC was significantly dependent on plasma power. Relative in the $TiO_2$ surface change and characteristics after plasma was investigated by various analysis methods. The structure of $TiO_2$ films was examined by X-ray diffraction (XRD). The morphology of $TiO_2$ films was observed using a field emission scanning electron microscope (FE-SEM). The surface elemental composition was determined using X-ray photoelectron spectroscopy (XPS). Each of plasma power differently affected conversion efficiency of DSSC with plasma-treated $TiO_2$ compared to untreated DSSC under AM 1.5 G spectral illumination of $100mWcm^{-2}$.

  • PDF

A Study on the Technique of Efficient TDOA Technique Direction Finding Using Drones (드론을 이용한 효율적인 TDOA 방향탐지 기법 연구)

  • Choi, Hong-Rak;Hah, Tae-Yeong;Kim, Young Won;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.97-104
    • /
    • 2018
  • In the conventional direction finding, the antenna is installed at a high position on the ground to detect the position of the target with the environment of the LOS(Line of Sight) as much as the signal receiving environment. However, in order to configure such environment, high cost and installation time were required. In this paper, we use TDOA(Time Difference of Arrival) technique to utilize drones in direction finding, so that four drones can be used for directions finding simulation. Simulations based on drone and TDOA direction finding were constructed using additional signal processing Taylor series and Exact Interactive Algorithm. In the simulation, the receiving power is defined by using the 800MHz path-loss model using the GPS information of the ground direction detection, and the position estimation performance is analyzed when the TDOA technique, the Taylor series, and the Exact Interactive Alogrithm are applied.

A Study on Performance Improvement in Durability and Reliability of LPi Injector (LPI 인젝터의 성능 및 내구성 개선에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nnam;Baik, Seung-Kook;Shin, Moon-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2012
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPi (Liquid phase LPG injection) which uses pump for the high pressure supply of liquid LPG fuel and is able to meet the limits of better emission levels while it has an advantage of higher power. Although it has the advantage of power and lower emission levels, the characteristics of LPG, such as high vapor pressure, lower viscosity and surface tension than gasoline fuels makes it difficult design system. Therefore most fuel pumps and injectors are imported. In the present study, in order to domestically develop LPG injector which guarantees flow rates and optimal operation, the experimental investigation on leakage and flow rate characteristics of developed prototype injector was carried out at the bench test rig for developed injector.

Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

  • Kim, Dong-Jin;Lee, Han Hee;Kwon, Hyuk Chul;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at $120^{\circ}C$ and 98 wt% at $320^{\circ}C$. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition.

Cooling Performance Study of a Impinging Water Jet System with Heat Sink for High Power LEDs (분사냉각모듈 내에 부착된 히트싱크에 따른 고출력 LED의 냉각성능에 관한 연구)

  • Ku, G.M.;Kim, K.;Park, S.H.;Choi, S.D.;Heo, J.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.152-158
    • /
    • 2013
  • The purpose of this study is to investigate cooling performance of high power LEDs from 100 to 200 W class by using a jet impingement cooling module. The numerical analysis of forced convection cooling inside cooling module is carried out using a multi-purpose CFD software, FLUENT 6.3. In the experiments, the LED cooling system consists of jet impingement module, heat exchanger, water reservoir, and pump. In the present study, the cooling performance of jet impingement cooling module is investigated to determine the effect of the heat sink types on the impinging surface, the space and length of fins. Numerical and experimental studies show the reasonable agreement of LED metal PCB temperature between those results and give the optimized design parameters such as the space of fin and the length of fin. Also, the pin fin type of heat sink is found to be more efficient than the plate type heat sink in jet impingement cooling.

High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation (적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법)

  • Cha, Gwang-Ho;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2002
  • In this paper, we propose the LPC+-file for efficient indexing of high-dimensional image data. With the proliferation of multimedia data, there Is an increasing need to support the indexing and retrieval of high-dimensional image data. Recently, the LPC-file (5) that based on vector approximation has been developed for indexing high-dimensional data. The LPC-file gives good performance especially when the dataset is uniformly distributed. However, compared with for the uniformly distributed dataset, its performance degrades when the dataset is clustered. We improve the performance of the LPC-file for the strongly clustered image dataset. The basic idea is to adaptively partition the data space to find subspaces with high-density clusters and to assign more bits to them than others to increase the discriminatory power of the approximation of vectors. The total number of bits used to represent vector approximations is rather less than that of the LPC-file since the partitioned cells in the LPC+-file share the bits. An empirical evaluation shows that the LPC+-file results in significant performance improvements for real image data sets which are strongly clustered.

A Study on Optimal Capacity Design of Renewable Combined Power System for Energy Self-Sufficient Island (에너지 자립섬을 위한 신재생복합발전시스템의 최적용량 설계에 관한 연구)

  • Chang, Bong-Chul;Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1271-1276
    • /
    • 2015
  • The recent trend is that diesel power generation on islands where its prime cost for power generation is high is replaced by new and renewable energy. Therefore, south Jeolla province is progressing the construction project of self-sufficient islands for the areas where power is supplied by depending on diesel generators, which is the project that power is supplied through eco-friendly energy source using sunlight, wind power and energy storage device etc. However, it is difficult to construct new and renewable energy source with the capacity to respond to the load perfectly due to its environmental and geographical conditions regarding capacity design of new and renewable energy. Besides, Microgrid design considering appropriate capacity design of the system components and efficient operation is required through the analysis of climate conditions and load patterns from the design stage for optimal composition of a hybrid system with economic feasibility. Therefore, this study is aimed to conduct a research on optimal combination, capacity calculation and economic feasibility by comprising a hybrid power generation system which will replace 40% of power generation by diesel as new and renewable energy source for Geomun Island where has more than 300 households and requires expansion of the facility among islands located in southwest coast.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.