• Title/Summary/Keyword: High-efficient power

Search Result 1,334, Processing Time 0.025 seconds

A Study on Core Structure of High Frequency Transformer to Improve Efficiency of Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2014
  • Recently, module-integrated converter (MIC) research has shown interest in small-scale photovoltaic (PV) generation. The converter is capable of efficient power generation. In this system, the high frequency transformer should be made compact, and demonstrate high efficiency characteristics. This paper presents a core structure optimization procedure to improve the efficiency of a high frequency transformer of compact size. The converter circuit is considered in the finite element analysis (FEA) model, in order to obtain an accurate FEA result. The results are verified by the testing of prototypes.

Improved Pre-charging Method for MMC-Based HVDC Systems Operated in Nearest Level Control

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.127-135
    • /
    • 2017
  • Recently the researches on modular multi-level converter (MMC) are being highlighted because high quality and efficient power transmission have become key issues in high voltage direct current (HVDC) systems. This paper proposes an improved pre-charging method for the sub-module (SM) capacitor of MMC-based HVDC systems, which operates in the nearest level control (NLC) modulation and does not need additional circuits or pulse width modulation (PWM) techniques. The feasibility of the proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 SMs per each arm. Hardware experiments with a scaled prototype have also been performed in the lab to confirm the simulation results.

Development of a Compact 50 kV, 10 kW Transformer for High Frequency Switch Mode (50 kV, 10kW 소형 고주파 전원장치 변압기 개발)

  • Son, Y.G.;Oh, J.S.;Jang, S.D.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2027-2029
    • /
    • 1998
  • We have developed a compact high frequency switch mode converter (HFSMC) power supply with DC 50 kV output voltage and 10 kW output power. Since the inverter circuit uses 25 kHz rescharging scheme, the current is flowing with t kHz. For the efficient output voltage transform performed a simple design process using the transformer principle and the commercial specification. For the DC 50 kV output, we employed 7 pa windings of secondary coils for the series stac connection of the output with full-bridge rectifi In this paper the design detail and the test re the high frequency transformer together with HFSMC power supply are presented.

  • PDF

A Study on Quantitative Performance Index for Phase-Change Cooling Systems (상변화 냉각시스템의 정량적 성능지수 연구)

  • Jang, Myeong-Eon;Song, Hye-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • In this paper, I introduce Phase-Change Cooling for thermal management of high power devices that can be applied to High Power Laser and Electric Propulsion Systems which are composed of multiple distributed superheat sources. Phase-Change Cooling can be good used to efficient cooling of their heat sources. Phase-Change Cooling has extremely high efficiency of two-phase heat transport by utilizing heat of vaporization, relatively low flow rates and reduced pumps power. And I suggest TPI(Thermal Performance Index) which is a quantitative performance index of Phase-Change Cooling for thermal management. I quantify the performance of Phase-Change Cooling by introducing TPI. I present the test results of TPI's changing refrigerant, heat sink and flow rate of the Phase-Change Cooling system through the experiments and analyze these results.

Implementation of a High Performance XOR-XNOR Circuit

  • Kim, Jeong-Beom
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.351-356
    • /
    • 2022
  • The parity function can be implemented with XOR (exclusive-OR) and XNOR (exclusive NOR) circuit. In this paper we propose a high performance XOR-XNOR circuit. The proposed circuitreduced the internal load capacitance on critical path and implemented with 8 transistors. The circuit produces a perfect output signals for all input combinations. Compared with the previous circuits, the proposed circuit presents the improved characteristics in average propagation delay time, power dissipation, power-delay product (PDP), and energy-delay-product (EDP). The proposed circuits are implemented with standard CMOS 0.18um technology. Computer simulations using SPICE show that the proposed circuit realizes the expected logic functions and achieves a reasonable performance.

Optimization of energy level alignment for efficient organic photovoltaics (에너지 준위 접합 최적화를 통한 유기태양전지 효율 향상법)

  • Lee, Hyunbok
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.12-16
    • /
    • 2015
  • Organic photovoltaics (OPVs) have attracted significant interest in an interdisciplinary research field for the decades as a next-generation photovoltaic device due to their unique advantages. One of requirements for OPVs having high power conversion efficiency is the favorable energy level alignment between the electrode/organic and organic/organic interfaces to manage the exciton dissociation and improve the charge transport. In this review, strategies to enhance the OPV performance by controlling the energy level alignment are discussed. The insertion of an exciton blocking layer leads to the efficient dissociation of photogenerated excitons at the donor/acceptor interface enhancing the short-circuit current density. The choice of a donor having a high ionization energy and an acceptor having a low electron affinity increases the open-circuit voltage. The insertion of an appropriate work function modifier which reduces the charge injection barrier removes the S-kink in current density-voltage characteristics of OPVs and improves the fill factor. This review would give a valuable guide to design the efficient OPV structure.

Design of a Highly Efficient Broadband Class-E Power Amplifier with a Low Q Series Resonance

  • Ninh, Dang-Duy;Nam, Ha-Van;Kim, Hyoungjun;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.143-149
    • /
    • 2016
  • This work presents a method used for designing a broadband class-E power amplifier that combines the two techniques of a nonlinear shunt capacitance and a low quality factor of a series resonator. The nonlinear shunt capacitance theory accurately extracts the value of class-E components. In addition, the quality factor of the series resonator was considered to obtain a wide bandwidth for the power amplifiers. The purpose of using this method was to produce a simple topology and a high efficiency, which are two outstanding features of a class-E power amplifier. The experimental results show that a design was created using from a 130 to 180 MHz frequency with a bandwidth of 32% and a peak measured power added efficiency of 84.8%. This prototype uses an MRF282SR1 MOSFET transistor at a 3-W output power level. Furthermore, a summary of the experimental results compared with other high-efficiency articles is provided to validate the advantages of this method.

State Estimation in Subway Power Systems (지하철 전력 시스템 대한 상태추정)

  • Ryu, Heon-Su;Ha, Un-Gwan;Mun, Yeong-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.1
    • /
    • pp.29-36
    • /
    • 2002
  • It is required that the current state of system should be Precisely monitored for efficient and safe operation of the subway power system and it is an important Problem to secure the high quality data for state estimation. The current state of subway power system is estimated by using data transmitted to control center from every measuring instrument. The high accuracy and trust can be maintained if the measured data have a high quality. But it is difficult to estimate the accurate state of system because of the noises in transmitted data and the inaccuracy of measuring instruments. So the object is to reduce the difference between the real values and the measured values in order to improve considerably the inaccuracy due to Instrumental errors and transmission noises using the state estimation method. In this paper, we proposes a new state estimation to estimate the accurate state of the subway power system from the measured values of a Sang-In station in Daegu subway and consider the possibility of application to the real subway power system. on the basis of that. The simulation results show to make sure of the possibility to apply to the real system usefully.

A Platform-Based SoC Design of a 32-Bit Smart Card

  • Kim, Won-Jong;Kim, Seung-Chul;Bae, Young-Hwan;Jun, Sung-Ik;Park, Young-Soo;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.510-516
    • /
    • 2003
  • In this paper, we describe the development of a platform-based SoC of a 32-bit smart card. The smart card uses a 32-bit microprocessor for high performance and two cryptographic processors for high security. It supports both contact and contactless interfaces, which comply with ISO/IEC 7816 and 14496 Type B. It has a Java Card OS to support multiple applications. We modeled smart card readers with a foreign language interface for efficient verification of the smart card SoC. The SoC was implemented using 0.25 ${\mu}m$ technology. To reduce the power consumption of the smart card SoC, we applied power optimization techniques, including clock gating. Experimental results show that the power consumption of the RSA and ECC cryptographic processors can be reduced by 32% and 62%, respectively, without increasing the area.

  • PDF

Isolated Boost Converter with Bidirectional Operation for Supercapacitor Applications

  • Hernandez, Juan C.;Mira, Maria C.;Sen, Gokhan;Thomsen, Ole C.;Andersen, Michael A.E.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.507-515
    • /
    • 2013
  • This paper presents an isolated bidirectional dc/dc converter based on primary parallel isolated boost converter (PPIBC). This topology is an efficient solution in low voltage high power applications due to its ability to handle high currents in the low voltage side. In this paper, the converter has been modeled using non-ideal components and operated without any additional circuitry for startup using a digital soft-start procedure. Simulated and measured loop gains have been compared for the validity of the model. On-the-fly current direction change has been achieved with a prototype interconnecting two battery banks. A second prototype has been constructed and tested for supercapacitor operation in constant power charge mode.