• Title/Summary/Keyword: High-early-Strength Concrete

Search Result 461, Processing Time 0.031 seconds

Setting Assessment of Hogh Strength Concrete Using the Ultrasonic Pulse Velocity Monitoring (초음파 속도 모니터링에 의한 고강도 콘크리트의 응결 평가)

  • 이회근;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.973-981
    • /
    • 2002
  • Recently, the use of high strength concrete (HSC) has increased dramatically md however, few studies have been conducted on the early-age properties of HSC such as setting. The penetration resistance test (specified by KS F 2436) that is the standard test method for determining initial and final setting times of concrete, may not be appropriate for HSC because of the high viscosity of the mortar mixture. To address this issue, an ultrasonic pulse velocity (UPV) monitoring system was used to investigate the setting behavior of mortar and concrete. The experimental study was carried out to measure the UPV's of mortars and concretes having various water/binder ratios (W/B) and various fly ash replacement levels, during the first 24 hours of testing. Test results showed that the UPV in concrete was developed faster than that of mortar with the same W/B, and that of ordinary concrete was greater than that of fly ash concrete. Typical values of UPV were suggested that correspond to the initial and final setting times, based on following criteria: (1) the penetration resistance method; (2) the instant when the UPV begins to develop; and (3) the instant when the UPV development rate is maximum. The method and UPV monitoring device used in this study is promising for the setting assessment of concrete, particularly for HSC.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

An Experimental Study on the Improvement of Early Strength and Chloride Attack Resistance for Marine Concrete (해양용콘크리트의 초기강도 및 내염해 저항성 향상에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Jong-Back;Bae, Jun-Young;Seo, Shin-Seok;Jo, Sung-Hyun;Roh, Hyeon-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.661-664
    • /
    • 2008
  • The structure which is located in special surroundings like ocean-environment is physically and chemically eroded by seawater or salt damage, and then concrete-structure becomes deteriorated by iron corrosion and swelling pressure which leads to remarkably decline durability due to cracks and exploitation. As a measure against salt damage, it is actively being examined to use the blended cement that controls salt damage and fix chloride in the process of hydration. In this study, therefore, to examine the property of marine concrete added admixture, marine concrete is manufactured by adding high-strength admixture(omega2000) by 0, 5, 10, and 15% to low heat-blended cement. Then it shows that the compressive strength of manufactured marine cement tends to increase and chloride penetration resistance improves.

  • PDF

Compressive Strength Correlation of Very-Early-Strength Dry-Mix Shotcrete on Test Method (측정방법에 따른 속경성 건식 숏크리트 압축강도의 상관관계)

  • Yun, Kyong-Ku;Choi, Sung-Yong;Kim, Jin-Woung;Kil, Yong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3988-3997
    • /
    • 2010
  • Shotcrete was a mortar or concrete that is pneumatically projected at high velocity onto a subject. It has been applied for tunneling, underground big-spaces, slope stabilization. Shotcrete is increasing use in structure repair. The dry-mix shotcrete require a smaller equipment, easy maintenance, possible of very-earlystrength materials than wet-mix shotcrete, which make this process attractive and economic for structural repairs. It is common practice core compressive strength to the dry-mix shotcrete quality control. This test is very difficult estimating eraly-strength of Very-Early-Strength Dry-Mix Shotcrete. The purpose of this research was to analyze the correlation of test results among cube test, core test, pullout test and maturity. The correlationship analysis of test results among cube test, core test, pullout test and maturity showed more than 90%.

An Experimental Study on the Properties of UHPC with Different Types of Cements (시멘트 종류에 따른 초고성능 콘크리트의 특성에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.345-348
    • /
    • 2008
  • A Cement account for the most amount than other materials in the material composition of ultra-high-performance concrete. If we especially consider the effect of high temperature curing on the cement hydration and the problems of autogenous shrinkage, heat of hydration we need selection of proper cement type by grasping influence of cement in the properties of UHPC. Therefore, in this paper we examined properties of fluidity, compressive strength and elastic modulus of UHPC due to domestic portland cement types. In results, we could get a result that the low heat cement increase fluidity, compressive strength in UHPC compare with high early strength cement and ordinary portland cement. we are systematically going to examination on the influence of UHPC by domestic portland cement types.

  • PDF

A study on optimum mixing derivation of the enviroment-friendly high performance geopolymer paste (친환경 고성능 지오폴리머 페이스트의 적정배합 도출에 관한 연구)

  • Lee, Kang-Pil;Do, Yun-seok;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • After inquiring into physical characteristics of using fly ash and alkali solution, it was found that higher pH density is favorable to strength development at early age and the higher the age is, the higher the compressive strength gets. Also, it was found that when there is more addition of activator, the compressive strength is higher. I was shown that more than atmospheric curing, steam curing was favorable for development of compressive strength. When the temperature of curing temperature was higher, most of the compressive strengths were higher. Thus, based on this study, it was understood that environmental-friendly chemically combined concrete using fly ash and alkali solution can be utilized without using cement.

  • PDF

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.

Strength Development of Fly ash Substituted Concrete due to Blast Furnace Slag Powder and Gypsum Addition (고로슬래그 미분말 및 석고혼입에 따른 플라이애시 치환 콘크리트의 강도발현 특성)

  • Han, Cheon-Goo;Han, Min-Cheol;Jeon, Kyu-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • In this study, the effect of blast furnace slag and gypsum addition on strength development of fly ash substituted concrete is investigated experimentally. As a result, the fluidity represented a similar or larger level than that of OPC but showed a tendency to decrease the fluidity according to the increase in the replacement level of BS and GS for the FA replacement concrete. In the case of the air content, although it showed a larger decrease compared to that of OPC, it also represented that BS and GS did not affect the air content significantly. Regarding the compressive strength in the case of the replacement of BS and GS for the FA 10% replacement concrete, it showed a higher early strength than OPC. Whereas, in the case of the BS 5% replacement and GS 1% incorporation for the FA 10% replacement concrete showed the most excellent performance due to its high strength. In the correlation of the compressive strength according to the kinds of admixtures, it was evident that the GS incorporation played an important role in high strength gain.

  • PDF

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.