• Title/Summary/Keyword: High-density polyethylene

Search Result 363, Processing Time 0.027 seconds

Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화)

  • Park, Seung-Cho;Kim, Ik-Seong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.206-211
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) of polyethylene glycols (PEGs) of molecular weight of 1000, 4000 and 20000, was carried out on both platinum (Pt) and titanium-iridium electrodes in 8.0 M nitric acid solution containing 0.5 M Fe(II) and Co(II) ion. The electrochemical parameters such as current densities, kinds of electrode, electrolyte concentration and removal efficiency were investigated in both Fe(III)/Fe(II) and Co(III)/Co(II) redox systems. The PEGs was decomposed into carbon dioxide by MEO in Fe(III)/Fe(II) and Co(III)/Co(II) redox system during 180 min and 210 min at the current density of $0.67A/cm^2$ on the Pt electrode. Removal efficiency of PEGs by MEO was better in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, indicating mediated electrochemical removal efficiency was 100%.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Comparison of CT numbers between cone-beam CT and multi-detector CT (Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구)

  • Kim, Dong-Soo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

A Study on Combustion Characteristic with the Variation of Oxidizer phase in Hybrid Rocket Motor using PE/$N_2O$ (PE/$N_2O$ 하이브리드 로켓에서의 산화제 상 변화에 따른 연소특성 연구)

  • Lee, Jung-Pyo;Kim, Gi-Hun;Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • The purpose of this paper is to study combustion characteristics with the different phase of oxidizer in hybrid rocket combustion. HDPE(High Density Polyethylene) as fuel and $GN_2O$(Gas $N_2O$), $LN_2O$(Liquid $N_2O$) as oxidizer were used to perform the experiments. An investigation was performed for a change of the regression rate, pressure of combustion chamber and combustion efficiency according to the variation of oxidizer phase. In case of using $LN_2O$ as oxidizer, the regression rate is not significantly different from using $GN_2O$ as oxidizer. It is considered that combustion energy is much larger than latent heat energy which was used in the evaporation of liquid oxidizer. However propulsion performance efficiency for $LN_2O$ showed lower value than for $GN_2O$. By increasing the flow rate of liquid oxidizer, heat transfer needed for vaporization of liquid oxidizer was increased, which resulted in the growth of combustion instability.

Effects of PEG addition as an additive for electroplating of Cu at high current density (고전류밀도 전해도금 공정에서 PEG 첨가 효과)

  • Byeoung-Jae Kang;Jun-Seo Yoon;Jong-Jae Park;Tae-Gyu Woo;Il-Song Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.274-284
    • /
    • 2024
  • In this study, copper foil was electroplated under high current density conditions. We used Polyethylene Glycol (PEG), known for its thermal stability and low decomposition rate, as an inhibitor to form a stable and smooth copper layer on the titanium cathode. The electrolyte was composed of 50 g/L CuSO4 and 100 g/L H2SO4, MPSA as an accelerator, JGB as a leveler, and PEG as a suppressor, and HCl was added as chloride ions for improving plating efficiency. The copper foil electroplated in the electrolyte added PEG which induced to inhibit the growth of rough crystals. As a result, the surface roughness value was reduced, and a uniform surface was formed over a large area. Moreover, the addition of PEG led to priority growth to the (111) plane and the formation of polygonal crystals through horizontal and vertical growth of crystals onto the cathode. In addition, the grains became fine when more than 30 ppm of PEG was added. As the microcrystalline structure changed, mechanical and electrical properties were altered. With the addition of PEG, the tensile strength increased due to grain refinement, and the elongation was improved due to the uniform surface. However, as the amount of PEG added increased, the corrosion rate and resistivity increased due to grain refinement. Finally, it was possible to manufacture a copper foil with excellent electrical and mechanical properties and the best surface properties when electroplating was carried out under the condition of additives with Cl-20 ppm, MPSA 10 ppm, JGB 5 ppm, and PEG 10 ppm.

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers (섬유 조합에 따른 초고성능 콘크리트의 인장거동)

  • Choi, Jung-Il;Koh, Kyung-Taek;Lee, Bang-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.

Studies on Packaging of Chillies (Capsicum annum) in Flexible Films, and Their Laminates (유연포장재료(柔軟包裝材料)를 이용(利用)한 고추 포장(包裝)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.145-154
    • /
    • 1976
  • Studies have been carried out to design a suitable consumer size package from flexible packaging material to hold 100 grams of Chilli powder and 250 grams of whole chilli which are moisture and color sensitive. 1. Sorption characteristics of the chilli powder has revealed that moisture sorption is rapid above 55 per cent R.H., and the product is fairly hygroscopic. Further, an equilibrium moisture content of about 15 per cent at 70 per cent R.H., appears to be critical from the point of microbial spoilage of chilli powder. 2. Studies on the colour (Capsanthin) changes of chilli powder equilibriated to different moisture content, have revealed that colour changes during storage is greatly influenced by the moisture content and temperature decreases the capsanthin content of chilli during storage. 3. From the studies, it can be inferred that the sunlight exhibits pronounced effect in bleaching of colour and brings about maximum discolouration of the red pigment in chilli. 4. From the packaging and storage studies of chilli powder in different flexible films, it can be concluded that for long-term storage, the aluminium foil laminate is unique in offering maximum protection from various physico-chemical changes. For short-term storage and for fairly good moisture and colour protection, amber or black polyethylene, high-density polyethylene and Saran/Cello/Saran poly laminate pouches appear to be suitable alternatives.

  • PDF

Application of Different Packaging Methods and Materials for Comparing Freshness of Lettuce (Lactuca sativa L.) harvested in Summer Season (고온기 결구상추의 포장재와 포장방법 적용에 따른 선도 비교)

  • Lee, Jung-Soo;Choi, JeeWon;Kim, Jin Se;Park, Me Hea;Choi, HyunJinn;Lee, YounSuk;Kim, Dong Eok;Hong, YuunPo;Kim, Ji-Gang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.163-171
    • /
    • 2017
  • Effects of different packaging methods for maintaining the shelf life and postharvest quality of iceberg lettuce (Lactuca sativa L.) were studied after harvesting in summer season. Lettuce heads were packaged in plastic crate with or without different films such as (A) Individual lettuce head sealed packaging with linear low density polyethylene (LLDPE) film; (B) Packaging lettuce head in plastic crate and wrapped with LLDPE film; (C): Individual lettuce head sealed packaging with perforated high density polyethylene (HDPE) film; (D) Packaging lettuce head in plastic crate and wrapped with perforated HDPE; and (E) Packaging lettuce head in plastic crate without any film (control), and stored at $2^{\circ}C$ for 35 days. Several quality parameters such as fresh weight loss, SPAD (soil & plant analyzer development) meter value, respiration rate, moisture content and appearance of lettuce were investigated. The lettuce wrapped with individually-sealed LLDPE film showed the lowest weight loss and the highest SPAD value rendering the best appearance index among the treataments throughout the three-week storage period at $2^{\circ}C$. Extending the freshness of iceberg lettuce during low temperature storage will definitely increase the salability potential in the domestic market even during summer season.

Comparison of Magnesium Hydroxide Particles by Precipitation and Hydrothermal Treatment for Flame Retardant Application to Low Density Polyethylene and Ethylene-Co-Vinyl Acetate Resin (침전법과 수열처리로 제조된 수산화마그네슘 비교와 이의 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트 수지 난연제 적용)

  • Hyun, Mi Kyung;Lim, Hyung Mi;Yoon, Joonho;Lee, Dong Jin;Lee, Seung-Ho;Whang, Chin Myung;Jeong, Sang Ok
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2009
  • $Mg(OH)_2$ particles were prepared by precipitation and a hydrothermal treatment to examine the effect of $MgCl_2$ concentration, alkali type and concentration, temperature, hydrothermal treatment on the formation of $Mg(OH)_2$ particles using full factorial design, as one of DOE (Design of experiment) methods. The primary particle size is similar to the secondary particle size for the samples after the hydrothermal treatment, where the average particle size of $Mg(OH)_2$ increased with increasing the concentration of $MgCl_2$ and hydrothermal temperature and decreasing alkali/Mg molar ratio. On the other hand, for the samples prepared from precipitation, the secondary particle size is larger than the primary particles due to aggregation. The difference in alkaline source is that the particles prepared from $NH_4OH$ exhibit the larger size with better dispersion than those from NaOH. Low density polyethylene and ethylene-co-vinyl acetate (LDPE-EVA) resin composed of the smaller secondary particle size of $Mg(OH)_2$ shows a higher limited oxygen index (LOI) at 50 and 55% loading, but the smaller primary particle size may result in a better grade in UL-94 tests. At the high loading of 60%, all samples with any preparation methods exhibit V-0 grade but the LOI value depends on not only primary particle size but also dispersion state.

Evaluation of the Impact on Manufacturing Temperature and Time in the Production Process of Bio-composites (바이오복합재료 제조 공정시 제조온도 및 시간에 의한 영향 평가)

  • Park, Sang-Yong;Han, Gyu-Seong;Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.29-37
    • /
    • 2005
  • The main objective of this research was conducted to evaluate the impacts on the thermoplastic polymer which is a matrix polymer and the rice husk flour (RHF) which is a reinforcing filler relative to the manufacturing temperature and time when bio-composites were manufactured. In order to evaluate the impacts on the rice husk flour relative to the manufacturing temperature, the rice husk flour was persevered for 10 minutes to 2 hours period at $220^{\circ}C$ temperature which was then added with the polypropylene (PP) and low-density polyethylene (LDPE) to complete the manufacturing process of the bio-composites and measure the corresponding mechanical properties. As preserving time increased at $220^{\circ}C$, the tensile and impact strength were decreased due to the thermal degradation of the main components within the rice husk flour. The thermogravimetric analysis (TGA) was used to measure weight loss caused by the actual manufacturing temperature and the result was that the thermoplastic polymer had not scarcely occurred weight change, but there had been increasing rate of weight loss relative to time for the rice husk flour and the bio-composites under the consistent temperature of $220^{\circ}C$ for 2 hour time period. Therefore, the proper manufacturing temperature and time settings are significantly important features in order to prevent the reduction of mechanical properties which were induced throughout the manufacturing process under the high manufacturing temperature.