Evaluation of the Impact on Manufacturing Temperature and Time in the Production Process of Bio-composites

바이오복합재료 제조 공정시 제조온도 및 시간에 의한 영향 평가

  • Park, Sang-Yong (Wood and Paper Science, School of Forest Resources, Chunbuk National University) ;
  • Han, Gyu-Seong (Wood and Paper Science, School of Forest Resources, Chunbuk National University) ;
  • Kim, Hee-Soo (Lab. of Adhesion & Bio-composites, Dept. of Forest Products, College of Agriculture & Life Science, Seoul National University) ;
  • Yang, Han-Seung (Lab. of Adhesion & Bio-composites, Dept. of Forest Products, College of Agriculture & Life Science, Seoul National University) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-composites, Dept. of Forest Products, College of Agriculture & Life Science, Seoul National University)
  • 박상용 (충북대학교 산림과학부 목재종이과학전공) ;
  • 한규성 (충북대학교 산림과학부 목재종이과학전공) ;
  • 김희수 (서울대학교 임산공학과) ;
  • 양한승 (서울대학교 임산공학과) ;
  • 김현중 (서울대학교 임산공학과)
  • Received : 2004.11.11
  • Accepted : 2004.12.01
  • Published : 2005.01.25

Abstract

The main objective of this research was conducted to evaluate the impacts on the thermoplastic polymer which is a matrix polymer and the rice husk flour (RHF) which is a reinforcing filler relative to the manufacturing temperature and time when bio-composites were manufactured. In order to evaluate the impacts on the rice husk flour relative to the manufacturing temperature, the rice husk flour was persevered for 10 minutes to 2 hours period at $220^{\circ}C$ temperature which was then added with the polypropylene (PP) and low-density polyethylene (LDPE) to complete the manufacturing process of the bio-composites and measure the corresponding mechanical properties. As preserving time increased at $220^{\circ}C$, the tensile and impact strength were decreased due to the thermal degradation of the main components within the rice husk flour. The thermogravimetric analysis (TGA) was used to measure weight loss caused by the actual manufacturing temperature and the result was that the thermoplastic polymer had not scarcely occurred weight change, but there had been increasing rate of weight loss relative to time for the rice husk flour and the bio-composites under the consistent temperature of $220^{\circ}C$ for 2 hour time period. Therefore, the proper manufacturing temperature and time settings are significantly important features in order to prevent the reduction of mechanical properties which were induced throughout the manufacturing process under the high manufacturing temperature.

본 연구는 바이오복합재(bio-composites) 제조시 제조온도와 시간이 기질인 열가소성 고분자와 충전제인 왕겨분말에 미치는 영향을 평가하기 위하여 수행하였다. 제조온도가 왕겨분말에 미치는 영향에 대해 알아보기 위해 왕겨분말을 $220^{\circ}C$에서 10분부터 2시간 동안 처리한 후 열가소성 고분자인 polypropylene (PP)과 low-density polyethylene (LDPE)에 충전제로 첨가하여 바이오복합재를 제조한 후 기계적 성질을 측정하였다. $220^{\circ}C$에서 왕겨분말의 처리시간이 증가할수록 왕겨분말의 주요 구성성분이 열분해로 인하여 인장강도와 충격강도값이 감소하였다. 실제적인 제조온도에 의한 중량감소를 측정하기 위하여 열중량분석기(thermogravimetric analysis, TGA)를 이용하여 $220^{\circ}C$의 등온상태에서 2시간 동안 측정한 결과 열가소성고분자에서는 중량의 변화가 거의 발생하지 않았으며 충전제인 왕겨분말과 바이오복합재의 경우 시간이 증가할수록 열분해에 의한 중량감소량이 증가하는 것을 확인할 수 있었다. 그러므로 바이오복합재 제조시 높은 제조온도로 인한 물성의 저하를 방지하기 위해서는 적절한 온도와 제조시간을 결정하는 것이 중요하다고 볼 수 있다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Alvarez, V. A. and A. Vazquez. 2004. Thermal degradation of cellulose derivatives/starch blends and sisal fiber biocomposites. Polymer Degradation and Stability. 84: 13-21 https://doi.org/10.1016/j.polymdegradstab.2003.09.003
  2. Colom, X., F. Carrasco, P. Pages, and J. Canavate. 2003. Effects of different treatments on interface of HDPE/lignocellulosic fiber composites. Composites Science and Technology. 63: 161-169 https://doi.org/10.1016/S0266-3538(02)00248-8
  3. Eom, Y-G., H.-S. Kim, H.-S. Yang, and H.-J. Kim. 2004. Physical properties of agro-flour filled aliphatic thermoplastic polyester bio-composites. Mokchae Konghak. 32(3): 71- 78
  4. 한성옥, 한문희. 2002. 천연섬유를 이용한 환경친화성 바이오복합재료 개발현황. 화학세계(한국화학회). 42(7): 28-33
  5. 황택성, 양한승, 김현중. 2002 바이오복합재료제조, 리그노셀룰로오스 섬유/열가소성 고분자 복합재료. 화학세계(한국화학회). 42(7): 34-38
  6. Mohanty, A. K., M. A. Khan, and G. Hinrichsen. 2000. Surface modification of jute and its influence on performance of biodegradable jutefabric/ Biopol composites. Composites Science Technology. 60: 1115-1124 https://doi.org/10.1016/S0266-3538(00)00012-9
  7. Kamdem D. P., H. Jing, W. Cui, J. Freed, and L. M. Matuana. 2004. Properties of wood plastic composites made of recycled HDPE and wood fluor from CCA-treated removed from service. Composites: Part A: 347-355
  8. Kim, H.-S., H.-S. Yang, H.-J. Park, and H.-J. Kim. 2004. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. Journal of Thermal Analysis and Calorimetry. 76:395-404 https://doi.org/10.1023/B:JTAN.0000028020.02657.9b
  9. Nikolic, M. S. and J. Djonlagic. 2001. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polymer Degradation and Stability. 74: 263-270 https://doi.org/10.1016/S0141-3910(01)00156-2
  10. Okada, M. 2002. Chemical syntheses of biodegradable polymers. Progress in Polymer Science. 27: 87-133 https://doi.org/10.1016/S0079-6700(01)00039-9
  11. Park, H.-M., S.-R. Lee, S. R. Chowdhury, T.-K. Kang, H.-K. Kim, S.-H. Park, and C.-S. Ha. 2002. Tensile properties, morphology, and biodegradability of blends of starch with various thermoplastics. Journal of Applied Polymer Science. 86: 2907-2915 https://doi.org/10.1002/app.11332
  12. Stark, N. M. and L. M. Matuana. 2004. Surface chemistry changes of weathered HDPE/woodflour composites studied by XPS and FTIR spectroscopy. Polymer Degradation and Stability. 86:1-9 https://doi.org/10.1016/j.polymdegradstab.2003.11.002
  13. Stokke, D. D., M. Kuo, D. G. Curry, and H. H. Gieselman. 2001. Grassland flour polyethylene composites. The Sixth International Conference on Woodfibre-Plastic Composites. 43-53
  14. Wielage, B., Th. Lampke, G. Marx, K. Nestler, and D. Starke. 1999. Thermogravimetric and differential Scanning calorimetric analysis of natural fibres and polypropylene. Thermochimica Acta. 337: 169-177 https://doi.org/10.1016/S0040-6031(99)00161-6
  15. Yang, H.-S., H.-J. Kim, J. Son, H.-J. Park, B.-J. Lee, and T.-S. Hwang. 2003. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structres. 63(3): 303-311