• Title/Summary/Keyword: High-Speed Railway Systems

Search Result 348, Processing Time 0.03 seconds

Optimization of Train Working Plan based on Multiobjective Bi-level Programming Model

  • Hai, Xiaowei;Zhao, Chanchan
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.487-498
    • /
    • 2018
  • The purpose of the high-speed railway construction is to better satisfy passenger travel demands. Accordingly, the design of the train working plan must also take a full account of the interests of passengers. Aiming at problems, such as the complex transport organization and different speed trains coexisting, combined with the existing research on the train working plan optimization model, the multiobjective bi-level programming model of the high-speed railway passenger train working plan was established. This model considers the interests of passengers as the center and also takes into account the interests of railway transport enterprises. Specifically, passenger travel cost and travel time minimizations are both considered as the objectives of upper-level programming, whereas railway enterprise profit maximization is regarded as the objective of the lower-level programming. The model solution algorithm based on genetic algorithm was proposed. Through an example analysis, the feasibility and rationality of the model and algorithm were proved.

The Study on Analysis of Absolute Train Positioning System for Maglev System (자기부상철도의 절대위치검지시스템 구조 분석 연구)

  • Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1179_1180
    • /
    • 2009
  • In the maglev system, accurate train position is essential for safe and efficient train operation. Train positioning systems in the maglev systems are different from conventional railway system because railway train has no wheels. And various train positioning principles and systems have been used in maglev systems. In this paper, we study several positioning principles and systems on adapting existing various maglev systems and analyze functional structure of absolute positioning system in ultra high speed maglev system. Then we propose development scheme on absolute positioning system for developing ultra high speed maglev system.

  • PDF

Progress in Health Monitoring Research on Railway System (철도 시스템 건전성 평가기술 연구 동향)

  • Lee, Sang-Jung;Kim, Jeong-Guk;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2202-2208
    • /
    • 2010
  • The railway in Korea has been one of important transportation means as the introduction of high-speed train and progress in subway systems. Also, as increases in the speed of train, the guarantee of safety becomes more important, especially, in the fields of railway vehicles and/or facilities. The structural health evaluation for the prevention and diagnosis of the accidents could be conducted using several types of nondestructive evaluation techniques such as ultrasonic developed using infrared thermography or optic fiber sensors. In this paper, the recent progress in structural health evaluation for railway systems has been introduced, and the case studies have been discussed.

  • PDF

An integrated structural health monitoring system for the Xijiang high-speed railway arch bridge

  • He, Xu-hui;Shi, Kang;Wu, Teng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.611-621
    • /
    • 2018
  • Compared with the highway bridges, the relatively higher requirement on the safety and comfort of vehicle makes the high-speed railway (HSR) bridges need to present enhanced dynamic performance. To this end, installing a health monitor system (HMS) on selected key HSR bridges has been widely applied. Typically, the HSR takes fully enclosed operation model and its skylight time is very short, which means that it is not easy to operate the acquisition devices and download data on site. However, current HMS usually involves manual operations, which makes it inconvenient to be used for the HSR. Hence, a HMS named DASP-MTS (Data Acquisition and Signal Processing - Monitoring Test System) that integrates the internet, cloud computing (CC) and virtual instrument (VI) techniques, is developed in this study. DASP-MTS can realize data acquisition and transmission automatically. Furthermore, the acquired data can be timely shared with experts from various locations to deal with the unexpected events. The system works in a Browser/Server frame so that users at any places can obtain real-time data and assess the health situation without installing any software. The developed integrated HMS has been applied to the Xijiang high-speed railway arch bridge. Preliminary analysis results are presented to demonstrate the efficacy of the DASP-MTS as applied to the HSR bridges. This study will provide a reference to design the HMS for other similar bridges.

Optimum Design of High-Speed Railway Bridges Considering Bridge-Rail Longitudinal Interaction and Moving Load Effect (교량-궤도 종방향 상호작용 및 동적영향을 고려한 고속철도 교량의 최적설계)

  • Ihm, Yeong-Rok;Im, Seok-Been;Park, Kwang-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.27-34
    • /
    • 2010
  • Recently, high-speed railway systems have gained increased interest as a means of environmental friendly transportation, and numerous bridges for high-speed railways have been constructed accordingly. However, bridge design for high-speed railways requires more consideration than conventional railway design because fast-moving trains will lead to significant impact on bridge structures. Thus, this research proposes a revised design considering both bridge-rail longitudinal interaction and dynamic effect of trains to ensure stability of fast travelling trains. To validate the proposed design algorithm, numerical analyses are performed and compared using a constructed 250 m long bridge with 5 spans for a high-speed railway. From the numerical results, the proposed optimum design of high-speed railway bridges exhibits the most economic life-cycle-cost (LCC) when compared with several existing design approaches.

A Feasibility Study on TETRA System Application for Train Control Systems

  • Tsogtbayar, Chinzorig;Kang, Hyoungseok;Lee, Jongwoo;Boldbaatar, Tsevelsuren
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.36-40
    • /
    • 2016
  • TETRA communication system is very versatile system which can transmit voice + data and packet data optimized. Direct mode operation permits to connect between mobiles when mobile stain is out of coverage of networks. It can be more secure communication channel for railway signaling systems. Railway signaling systems use many of wayside signal equipment, which require many maintenance efforts and budget. Many railway authorities want to reduce and replace the wayside equipment. Radio based signaling systems are one of candidate for replacing the conventional signaling systems. The radio based signaling systems can replace track circuit and wayside signal. The radio systems permit to connect between control centers and trains. The radio systems have to ensure high quality of the connectivity more or equal to the existed track circuits. We studied the application of TETRA systems for railway radio systems for bridging between train control centers and trains. We provide an operation scenario for radio based train control system to ensure the safety require to the existed trains control system and satisfied the existed operational availability. We showed the data transmission speed, maximum bit error rate, and data coding for the radio-based signal system using TETRA systems.

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

Prediction/Investment Cost Analysis for korea High-Speed Railway System (한국형 고속전철 시스템의 추정/투입비용 분석)

  • Lee, Tae-Hyeong;Park, Chun-Su
    • 시스템엔지니어링워크숍
    • /
    • s.1
    • /
    • pp.60-64
    • /
    • 2003
  • In this study, we have analyzed the cost of korea high-speed railway system. The predicted cost in planning phase and adjustment data to 5th year are collected. Then, predicted cost is compared with adjustment in year/item/system base. We make a project history table for criteria to review project history and research & development activity. We have developed CBS(cost breakdown structure) and allocated adjustment data to them. It is shown that cost prediction related to research & development activity in planning phase is relatively correct.

  • PDF

Verification of Running Safety Evaluation Method for High-speed Railway (고속열차 주행안전성 평가법에 대한 검증 연구)

  • Ryu, Sang-Hyun;Kim, Sang-Soo;Kim, Dae-Sik;Kim, Sang-Young;Hong, June-Hee;Lee, Ki-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.310-317
    • /
    • 2014
  • The Next-generation High-speed Rail Technology Development Project was started in 2007 by the Korean Government with the aim of developing the core technologies for a high-speed electric multiple unit (EMU) railway system. This is the first attempt to develop a high-speed EMU railway. High-speed EMU trains have superior acceleration and deceleration compared to push-pull high-speed railways such as KTX(Korean Train eXpress). A prototype train was developed and tested on a high-speed line starting in 2012. The new train must maintain running safety during the test. Generally, the international standard (UIC518) is adopted to evaluate the running safety of trains. This method suggests that the test zone must have over 25 sections, and the length of each section must be 500 m. However, it is difficult to implement these test conditions for a real high-speed line. In this study, we analyzed the running safety using several test section lengths (100 m to 500 m) and compared the results. The results of this study will be used to establish a running safety evaluation method for high-speed EMU railways.

An Analysis of Electric Noise of Railway Electric Inspection Car Measurement Module (종합검측차 검측모듈의 차상노이즈 분석)

  • Park, Young;Kwon, Sam-Young;Cho, Chul-Jin;Chae, Won Kyu;Lee, Jae-Hyeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.812-816
    • /
    • 2015
  • Recently, various monitoring systems have been proposed to detect interaction performance between trains and infrastructure, as well as, various techniques to improve the accuracy and performance of such inspection equipment in high speeds. Especially, it is important to predict electric noise of high speed trains due to its effect on detection system accuracy. In this paper, we analyze various types of electrical noise in electric vehicles to improve the accuracy of the detection module of the inspection car. In detail, analysis of electric noise of high speed railway is performed as a function of speed based on field tests that were carried out by HEMU-430X (Highspeed Eletric Multiple Unit - 430 km/h eXperiment).