• 제목/요약/키워드: High-Pressure Turbine

검색결과 457건 처리시간 0.025초

스팀터빈의 공력성능 평가를 위한 공기 상사실험 (Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine)

  • 임병준;이은석;양수석;이익형;김영상;권기범
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

증기터빈용 Synchro Clutch Coupling의 진동 특성 (Vibration Characteristics of a Synchro Clutch Coupling for Steam Turbine)

  • 심응구;이태구;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권3호
    • /
    • pp.66-72
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass unbalance, Shaft misalignment, Oil whip and rubbing etc. But in turbine which is normally operated and maintained, the Mass unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200 MW and 135 MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of #3 and #4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of #1 steam turbine. Until a recent date, #3 and #4 bearings which support high pressure turbine for #1 steam turbine had shown about $135{\mu}m$ in vibration amplitude (sometimes it increased to $221{\mu}m$ maximum. alarm: 6 mils, trip: 9 mils) at base load. After applying the study, they decreased to about $45{\mu}m$ maximum. It is a result from that we did not change the setting value of bearing alignment and only changed the assembly position of internal parts in Synchro clutch coupling rachet wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl cage surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, we researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and we got good result by applying the findings of this study.

  • PDF

경계요소법과 유한요소법을 이용한 발전용 고압 증기터빈 케이싱의 구조해석 (Structural Anaysis of High Pressure Steam Turbine Casings for Power Plants Using the BEM and the FEM)

  • 조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.609-616
    • /
    • 1998
  • Structural analyses are preformed for the high pressure steam turbine casings of the nuclear and the fossil power plants. An axisymmetric boundary element program for analysis of the casings is developed and applied in the process of practical structural design. To show the useful-ness and accuracy of the developed program results of the analysis are compared with those of the finite element analysis under hydrostatic test pressure, To check the validity of the axisymmetric numerical analysis of the casings the stresses resulting from the hydrostatic test pressure are measured using the strain gate. The results of the numerical analyses are compared and discussed with those of the experiments.

  • PDF

화력 발전기 고정자 권선에서의 수소 압력에 따른 부분 방전 특성 (The Effect of Hydrogen Pressure on Partial Discharge Spectroscopy in Turbine Generator Winding Insulations)

  • 김진봉;황돈하;김용주;박명수;김택수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1320-1325
    • /
    • 1995
  • For hydrogen-cooled large turbine generators, partial discharges in ground wall insulations are suppressed by high hydrogen pressure. The first goal of the experiment is to investigate the effect of hydrogen pressure on partial discharge activity and aging rate in turbine generator winding insulations. A series of tests have been performed on two groups of the accelerated aging experiments. The first group of stator windings was aged under hydrogen pressure of 4 atm while the second group of stator windings was aged under air atmosphere. The stator windings aged under air atmosphere suffer from larger partial discharge magnitude with larger voids at high electrical stress than those under hydrogen pressure. The second goal of the experiment is to evaluate the validity of on-line measurement technique which is normally measured under hydrogen environment. The test results show that further experiments are needed to apply the on-line scheme to turbine generator being under high hydrogen pressure.

  • PDF

증기터빈용 Synchro Clutch Coupling에서 발생하는 진동에 관한 연구 (A study on Mass Unbalance Vibration Generated from 200MW Steam Turbine Synchro Clutch Coupling)

  • 심응구;김영균;문승재;이재헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.232-235
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass Unbalance, Shaft Misalignment, Oil Whip and Rubbing etc. but in turbine which is normally operated and maintained, the Mass Unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200MW and 135MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of No 3 and 4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of No 1 steam turbine. Until a recent date, No 3 and 4 bearings which support high pressure turbine for No 1 steam turbine had shown about 135${\mu}$m in vibration amplitude (sometimes it increased to 221${\mu}$m maximum. alarm: 6mils, trip: 9mils) at base load. After applying the study, they decreased to about 40${\mu}$m maximum. It is a result from that we did not change the setting value of Bearing Alignment and only changed the assembly position of internal parts in Synchro Clutch Coupling Rachet Wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl stopper surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, We researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and We got good result by applying the findings of this study.

  • PDF

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

러너베인 깃수의 변화에 따른 튜블러형 상반전 수차의 성능해석 (The Performance Analysis of a Counter-rotating Tubular Type Turbine with the Number of Runner Vane)

  • 박지훈;이낙중;황영호;김유택;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.192.1-192.1
    • /
    • 2010
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this paper, detail studies have been carried out to acquire basic design data of micro counter-rotating hydraulic turbine, output power, head, and efficiency characteristics on various number of runner vane. Moreover, the influences of pressure, tangential and axial velocity distributions on turbine performance are also investigated.

  • PDF

Fault Detection of Governor Systems Using Discrete Wavelet Transform Analysis

  • Kim, Sung-Shin;Bae, Hyeon;Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.662-673
    • /
    • 2012
  • This study introduces a condition diagnosis technique for a turbine governor system. The governor system is an important control system to handle turbine speed in a nuclear power plant. The turbine governor system includes turbine valves and stop valves which have their own functions in the system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine governor control system are detected and identified. To achieve automatic detection of valve status, time-based and frequency-based analysis is employed. In this study, a new approach, wavelet decomposition, was used to extract specific features from the pressure signals of the governor and stop valves. The extracted features, which represent the operating conditions of the turbine governor system, include important information to control and diagnose the valves. After extracting the specific features, decision rules were used to classify the valve conditions. The rules were generated by a decision tree algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based analysis were compared to detection results using time- and frequency-based approaches. Compared with the several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage of easier application without auxiliary features.

항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석 (Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine)

  • 김진욱;박정규;강영석;조진수
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

디퓨져를 이용한 튜블러형 상반전 수차의 CFD 성능해석 (CFD Analysis of a Counter-rotating Tubular Type Micro-Turbine with Diffuser)

  • 이낙중;박지훈;황영호;김유택;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.205.2-205.2
    • /
    • 2011
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this study, in order to acquire design data of counter-rotating tubular type micro-turbine, output power, head, and efficiency characteristics due to the diffuser.

  • PDF