• Title/Summary/Keyword: High-Performance Storage

Search Result 1,015, Processing Time 0.046 seconds

A SAN Optimization Scheme for High-Performance Storage System (고성능 저장장치를 위한 SAN최적화기법)

  • Lee, In-Seon
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.379-388
    • /
    • 2014
  • We noted that substituting hard disk with high-performance storage device on SAN did not immediately result in getting high performance. Investigating the reason behind this leaded us to propose optimization schemes for high-performance storage system. We first got rid of the latency in the I/O process which is unsuitable for the high-performance storage device, added parallelism on the storage server, and applied temporal merge to Superhigh speed network protocol for improving the performance with small random I/O. The proposed scheme was implemented on the SAN with high-performance storage device and we verified that there were about 30% reduction on the I/O delay latency and 200% improvement on the storage bandwidth.

Torus Network Based Distributed Storage System for Massive Multimedia Contents (토러스 연결망 기반의 대용량 멀티미디어용 분산 스토리지 시스템)

  • Kim, Cheiyol;Kim, Dongoh;Kim, Hongyeon;Kim, Youngkyun;Seo, Daewha
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1487-1497
    • /
    • 2016
  • Explosively growing service of digital multimedia data increases the need for highly scalable low-cost storage. This paper proposes the new storage architecture based on torus network which does not need network switch and erasure coding for efficient storage usage for high scalability and efficient disk utilization. The proposed model has to compensate for the disadvantage of long network latency and network processing overhead of torus network. The proposed storage model was compared to two most popular distributed file system, GlusterFS and Ceph distributed file systems through a prototype implementation. The performance of prototype system shows outstanding results than erasure coding policy of two file systems and mostly even better results than replication policy of them.

Design and simulation of high performance computer architecture using holographic data storage system for database and multimedia workloads

  • Na, Jong-Whoa;Ryu, Dae-Hyun;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.169-173
    • /
    • 2003
  • The performance of modern mainframe computers keeps increasing due to the advances in the semiconductor technology. However, the quest for the faster computer has never been satisfied. To overcome the discrepancy in the supply and demand, we studied a high performance computer architecture utilizing a three-dimensional Holographic Data Storage Systems (HDSS) as a secondary storage system. The HDSS can achieve a high storage density by utilizing the third dimension. Furthermore, the HDSS can exploit the parallelism by processing the two-dimensional data in a single step. To compare the performance of the HDSS with the conventional hard disk based storage system, we modeled the HDSS using the DiskSim simulation engine and performed the simulation study. Results showed that the HDSS can improve the access time by 1.7 times.

Column-aware Polarization Scheme for High-Speed Database Systems (고속 데이터베이스 시스템을 위한 컬럼-인지 양분화 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.83-91
    • /
    • 2012
  • Recently, column-oriented storage has become a progressive model for high-speed database systems because of its superior I/O performance. In this paper, we analysis traditional raw-oriented storage model and then propose a new column-aware storage management model using flash memory drive and assist drive to improve the effective performance of the high-speed column-oriented database system. Our storage management scheme called column-aware polarization improves the performance of update operation by dividing and compressing table columns into active-columns or inactive-columns, and balancing congested update operations using a assist drive in high workload periods. The results obtained from experimental tests show that our scheme improves the update throughput of column-oriented storage by 19 percent, and the response time by up to 49 percent.

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

Hybrid in-memory storage for cloud infrastructure

  • Kim, Dae Won;Kim, Sun Wook;Oh, Soo Cheol
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2021
  • Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage (SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12% improvement of container's performance tests.

A Scheme on High-Performance Caching and High-Capacity File Transmission for Cloud Storage Optimization (클라우드 스토리지 최적화를 위한 고속 캐싱 및 대용량 파일 전송 기법)

  • Kim, Tae-Hun;Kim, Jung-Han;Eom, Young-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.670-679
    • /
    • 2012
  • The recent dissemination of cloud computing makes the amount of data storage to be increased and the cost of storing the data grow rapidly. Accordingly, data and service requests from users also increases the load on the cloud storage. There have been many works that tries to provide low-cost and high-performance schemes on distributed file systems. However, most of them have some weaknesses on performing parallel and random data accesses as well as data accesses of frequent small workloads. Recently, improving the performance of distributed file system based on caching technology is getting much attention. In this paper, we propose a CHPC(Cloud storage High-Performance Caching) framework, providing parallel caching, distributed caching, and proxy caching in distributed file systems. This study compares the proposed framework with existing cloud systems in regard to the reduction of the server's disk I/O, prevention of the server-side bottleneck, deduplication of the page caches in each client, and improvement of overall IOPS. As a results, we show some optimization possibilities on the cloud storage systems based on some evaluations and comparisons with other conventional methods.

A Study on the Performance Characteristics of the High Temperature Heat Storage Tank using MgO Materials (MgO를 사용한 고온축열탱크의 성능특성에 관한 연구)

  • Cho, So-Ang;Shin, Chang-Hoon;Lee, Su-Sang;Yoon, Seok-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.413-418
    • /
    • 2011
  • The global warming by abuse of fossil fuel is going to become an important problem which must be solved by human beings. This research is to develop a high temperature heat storage tank with high efficiency and to investigate the performance characteristics of this tank to help these energy problem. But the researches for this area have not been enough until now and specially the researches for high temperature heat storage tank are very few. For this research, heat storage bricks were made using MgO powder and studied about the performance characteristics of high temperature heat storage tank by experimental method. Through this research, it was confirmed that MgO can be used as a heat storage material for high temperature range.

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen (수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;KIM, SI POM;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.