• Title/Summary/Keyword: High voltage capacitor charger

Search Result 26, Processing Time 0.022 seconds

Development of Charger/Discharger to Test Performance for EDLC (EDLC를 위한 성능시험용 충방전기 개발)

  • Kim, Geum-Soo;Moon, Jong-Hyun;Cho, Hyun-Cheol;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.16-22
    • /
    • 2012
  • With the increase of consumption of new renewable energy, the use of Electric Double Layer Capacitor(EDLC) is being gradually widened as the next generation energy storage device. In order to expand the market of EDLC which is recently receiving a lot of attraction as a new promising area, development of a charge/discharge cycle tester to measure and test performance, is essential. Therefore, this research designed a circuit to measure capacity and internal resistance and a circuit to measure voltage maintenance properties, based on EDLC's basic charging/discharging properties so it is able to measure the state of charge and discharge at high speed. When evaluating performance characteristics, the 5[V]/100[A] prototype-EDLC charge/discharge testing system developed for this research showed ${\pm}0.1$[%] of accuracy of voltage and current measurement. It was also proved that the developed charge/discharge testing system for EDLC can be applied to the actual industry, when testing the entire system using a program produced for data monitoring and acquisition.

Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems (전기 자동차 배터리 충전장치용 3상 3스위치 전류형 정류기의 전류 왜곡 감소를 위한 펄스 폭 변조 스위칭 기법)

  • Chae, Beomseok;Kang, Taewon;Kang, Tahyun;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.375-387
    • /
    • 2015
  • This study investigates an economic and highly efficient power-converter topology and its modulation scheme for 60 kW rapid EV charger system. The target system is a three-phase three-switch buck-type rectifier topology. A new carrier-based PWM scheme, which is characterized by simple implementation using logic gates, is introduced in this paper. This PWM scheme replaces the diode rectifier equivalent switching state with an active switching state to produce the same effective current flowing path. As a result, the distortion of input current during the polarity reversal of capacitor line voltage can be mitigated. The proposed modulation technique is confirmed through simulation verification. The proposed modulation technique and its implementation scheme can expand the operation range of the three-phase three-switch buck-type rectifier with high-quality AC input and capacitor ripple current.

Design and Implementation of a 3-phase LCC Resonant Converter for High Voltage Capacitor Charger (고전압 커패시터 충전을 위한 3상 직병렬 공진형 컨버터 설계 및 구현)

  • Bae, Youngseok;Lee, Byungha;Koo, Insu;Jang, Sung-Rok
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.305-306
    • /
    • 2019
  • 본 논문에서는 고전압 커패시터 충전용 3상 LCC 공진형 컨버터를 설계하고 제작하였다. 고전압 커패시터 충전시간과 충전전압간에 선형성을 확보하기 위하여 컨버터는 충전 전 구간에서 정전류원으로 동작하도록 설계되었다. 공진탱크 설계를 위해서 FHA(Fundamental Harmonic Analysis) 기법을 이용하여 첨예도(Q; Quality factor)와 기저 주파수 변동에 따른 입출력 전류이득특성을 도출하였고 이를 바탕으로 28.8kJ/s의 충전속도를 가지며 최대 충전전압은 10kV 인 3상 LCC 공진형 컨버터를 제작하였다. 제작된 컨버터는 10kV, 600kJ 규격의 12mF 고전압 커패시터를 이용한 충전 실험을 통해 설계의 타당성을 확인하였다.

  • PDF

Research on High-Efficiency Power Conversion Structure for Railroad Auxiliary Power Supply(APS) System (철도차량 보조전원장치의 효율향상을 위한 새로운 전력변환회로 구조 연구)

  • Cho, In-Ho;Jung, Shin-Myung;Lee, Byoung-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • This paper introduces auxiliary power supply systems (APS) for railroad applications and proposes a new power conversion structure for highly-efficient and lightweight APS systems. The proposed structure focuses on an improvement of the power density in APS. It eliminates unnecessary power conversion stages in the conventional APS structure by modulating the dc/dc converter circuit and the structure of the system. The dc/dc converter circuit used in the proposed structure is based on a multi-level half-bridge converter, a widely used topology in railroad APS applications; a flying capacitor is newly added to the conventional circuit. The added capacitor is used not only to enhance the soft switching condition of the switches, but also so that the new pantograph will have a side voltage source of a battery charger in the APS structure. Since the battery charger uses the pantograph side voltage source in the proposed structure, rather than using the output of the main dc/dc converter in the conventional structure, the size and efficiency of the main dc/dc converter are reduced and increased, respectively. To verify the effectiveness of the proposed structure, simulation results will be presented with metropolitan transit APS specifications.

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Keum, Moon-Hwan;Jang, Du-Hee;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • A new high power density and low cost Photovoltaic Power Conditioning System (PV PCS) with energy storage system is proposed. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and battery charger/discharger. Despite of the reduced power stage, the proposed system can achieve the same performances of maximum power point tracking and battery charging/discharging as the conventional system. Moreover, the high voltage stress across the link-capacitor can be relieved through the series-connected link-capacitor with the battery. Therefore, a large number of series/parallel-connected link-capacitors can be reduced by 4-times. Especially, when the utility power failure happens, both photovoltaic and battery energies can be supplied to the load with only one power stage. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.