• Title/Summary/Keyword: High temperature performance

Search Result 3,887, Processing Time 0.026 seconds

Creep Behavior of Nylon Fiber Reinforced High Strength Concrete at Elevated Temperature (고온을 받은 나일론 섬유보강 고강도 콘크리트의 크리프 거동)

  • Lee, Young-Wook;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • Decrease of performance degradation of High Strength Concrete occurs more than that of normal strength concrete at elevated temperature. Therefore, when it comes to evaluating performance of structures, strain of concrete subjected to elevated temperature and loading are important items. In this study, creep strain of High Strength Concrete sunjected to various temperature conditions and 33% loading was evaluated. As a result, creep strain increased with increase of temperature and loading. Creep strain of concrete at high temperature is influenced by loading.

  • PDF

Control Performance Investigation of Piezoelectric Actuators under Variation of External Heat Environment (외부 열적 환경 변화에 따른 압전작동기 제어성능 열화 고찰)

  • Han, Young-Min;Moon, Byung Koo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.707-713
    • /
    • 2015
  • This paper proposes experimental results for control performance deterioration of a piezoelectric actuator under high temperature conditions due to external heat environment. In this work, a heat environment from 30 ℃ to 190 ℃ is established by a heat chamber which is capable of high temperature of heat environment. Inside the heat chamber, an experimental apparatus consisting of the stack type of piezoelectric actuator, laser sensor, gap sensor and temperature sensor is established. After evaluating temperature dependent blocking force, displacement and time response of a piezoelectric actuator inside the heat chamber, tracking control performances are evaluated under various temperature conditions via proportional-integral-derivative(PID) feedback controller. The desired position trajectory has a sinusoidal wave form with a fixed frequency. Control performances are experimentally evaluated at both room temperature and high temperature and presented in time domain.

Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter (연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향)

  • Hwang, Jin-Woo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

A Characteristic Analysis of High Pressure and High Temperature 3-way Ball Valve (고온.고압용 3-way 볼밸브의 특성해석)

  • Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • 3-way ball valves have been mostly used for high temperature/high pressure valves using in petrochemical carriers and oil tankers, which requires high quality products with confidentiality and durability. As a larger disaster may be generated by leakage of oil or gas from valves, thus the present research applied a numerical analysis method with thermal-structural coupled field analysis and the performance test. The Max stress by parts was confirmed through thermal-structural coupled field analysis and develop the 3-way ball valve design, which is safe on operating condition. And its performance was verified by carrying out pressure test, leakage test and durability test for the manufactured 3-way ball valves with satisfying it's regulations.

Fire Resistant Performance of Anti-Spalling ECC Layers in High-Strength Concrete Structures (ECC로 피복된 고강도콘크리트의 폭렬저감 및 열적특성에 관한 실험적 연구)

  • Lee, Jae-Young;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites(ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 3 HSC specimens are being exposed to fire, in order to examine the influence of various parameters(such as depth of layer=20, 30, 40mm; construction method=lining type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion(3hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

  • PDF

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

High Temperature Crystallized Poly-Si on the Molybdenum Substrate for Thin Film Transistor Applications (몰리브덴 기판 위에 고온 결정화된 다결정 실리콘 박막 트랜지스터 특성에 관한 연구)

  • 박중현;김도영;고재경;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.202-205
    • /
    • 2002
  • Polycrystalline silicon thin film transistors (poly-Si TFTs) are used in a wide variety of applications, and will figure prominently future high-resolution, high-performance flat panel display technology However, it was very difficult to fabricate high performance poly-Si TFTs at a temperature lower than 300$^{\circ}C$ for glass substrate. Conventional process on a glass substrate were limited temperature less than 600$^{\circ}C$ This paper proposes a high temperature process above 750$^{\circ}C$ using a flexible molybdenum substrate deposited hydrogenated amorphous silicon (a-Si:H) and than crystallized a rapid thermal processor (RTP) at the various temperatures from 750$^{\circ}C$ to 1050$^{\circ}C$. The high temperature annealed poly-Si film illustrated field effect mobility higher than 30 $\textrm{cm}^2$/Vs, achieved I$\sub$on//I$\sub$off/ current ratio of 10$^4$ and crystall volume fraction of 92%. In this paper, we introduce the new TFTs Process as flexible substrate very promising roll-to-roll process, and exhibit the properties of high temperature crystallized poly-Si Tn on molybdenum substrate.

  • PDF

Comparison of the Power Generating Characteristics of KIST- and FZ-Julich SOFCs (KIST와 FZ-Julich SOFC간의 출력성능 비교)

  • Jung, Hwa-Young;Lee, Sang-Cheol;Tietz, Frank;Kim, Hae-Ryoung;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.703-709
    • /
    • 2007
  • We evaluate and compare the power generating characteristics of the anode supported SOFCs which have been fabricated from KIST and FZ-Julich in Germany. The performance and electrochemical property of each unit cell was characterized at the temperature range of $650-850^{\circ}C$ under same operating conditions and its microstructural property was thoroughly investigated via SEM after the performance test. According to the investigation, KIST- and FZJ SOFC showed different power generating characteristics in their temperature dependances due to their different design of electrode microstructure, especially the cathode microstructure. FZJ SOFC showed better performance at high temperature while showed lower performance at lower temperature. From the investigation about the correlation between microstructure and electrochemical property, we found that the superior performance of FZJ SOFC at high temperature was mainly due to its lower cathodic polarization resistance whereas better performance of KIST SOFC at lower temperature was mostly attributed to the lower ohmic resistance.

Development of High Speed mid-Mower for Tractor (II) (트랙터용 고속 미드 모어 개발(II))

  • Kim, Sam-Hee;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • In recent years, work to improve the power of a tractor has been in development. This study, using the mid-PTO power of a compact tractor, attempted to develop a high-speed mid-mower by setting the rotation to more than 3,000 RPM designed/manufactured major components of the high speed mid-mower. The performance of high-speed mid-mower was evaluated by the precision of straight bevel gears, and durability, the noise of the gearbox, the gearbox internal temperature, the maximum rotation speed of the mid-mowers, and the grass cutting test. Through the performance test results, the maximum number of revolutions of the mid-mower was measured over 3,000RPM, the gearbox noise and gearbox internal temperature satisfied the performance requirements of a high speed mid-mower.

Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons

  • Kim, Eun Hee;Jung, Yongju
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.277-281
    • /
    • 2014
  • A series of high capacity soft carbons with different phosphorus contents were successfully prepared by carbonizing petroleum cokes treated with hypophosphorous acid at $900^{\circ}C$. The effect of phosphorus content on the electrochemical performance of the soft carbons was extensively investigated. The P-doped soft carbons exhibited greatly enhanced discharge capacities and outstanding rate capabilities with increasing phosphorus content. In addition, the influence of temperature on the electrochemical behaviors of the soft carbons was investigated in a wide temperature range of $25^{\circ}C$ to $50^{\circ}C$. Surprisingly, the electrochemical properties of the pristine and P-doped soft carbons were highly sensitive to the operating temperature, unlike conventional graphite. The pristine and P-doped soft carbons exhibited significantly high discharge capacities of 470 and 522 mAh/g, respectively, at a high temperature of $50^{\circ}C$.