• Title/Summary/Keyword: High temperature heating

Search Result 1,675, Processing Time 0.036 seconds

Some Properties of Polyphenol Oxidase from Apple (Golden Delicious) (사과(골덴) Polyphenol Oxidase의 효소학적(酵素學的) 성질(性質))

  • Chung, Ki-Taek;Seu, Seung-Kyo;Han, Sung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.2
    • /
    • pp.158-164
    • /
    • 1986
  • Polyphenol oxidase in apple (Golden Delicious) was extracted, partially purified and its properties were found as follows; Polyphenol oxidase showed optimum pH for activity at 6.5 and optimum temperature at $30^{\circ}C$ and high affinity to o-diphenol compounds. Cysteine, ascorbic acid and sodium metabisulfite appeared to be most effective inhibitors. EDTA showed a slight inhibition. During the enzyme was kept in test tube at $4^{\circ}C\;and\;20^{\circ}C$ for a week, polyphenol oxidase activity decreased sharply during the first four days at $20^{\circ}C$, then decreased slowly as the storage was prolonged. At $4^{\circ}C$, the polyphenol oxidase activity appeared to be relatively stable during the first two days before activity began to decline sharply. Polyacrylamide disc gel electrophoresis indicated four bands with polyphenol oxidase activity. Three bands and one band of the active bands were observed after heating for 1hr at $60^{\circ}C\;and\;70^{\circ}C$ respectively. The enzyme activity was observed 40% after treatment at $60^{\circ}C$ and 5% after treatment at $70^{\circ}C$. Therefore, no difference in the thermal stability was observed between active bands and the enzyme activity.

  • PDF

The Design and Characteristics of the Inductive Coupler Using the Nanocrystalline Materials (나노 결정립 재료를 이용한 비접촉식 커플러의 설계 및 특성)

  • Kim, Jong-Ryung;Kim, Hyun-Sik;Huh, Jeong-Sub;Lee, Hae-Yeon;Lee, Jun-Hui;Oh, Young-Woo;Byun, Woo-Bong
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.300-304
    • /
    • 2006
  • The varied heating temperatures were used for magnetic core materials, which nano sized ${\alpha}-Fe$ crystalline was created in nanocrystalline Fe-Si-B-Nb-Cu materials, with hish permeability and low power loss. The highest permeability and lowest power loss were obtained to the specimen heat-treated at $510^{\circ}C$. The signal transmission characteristics of inductive coupler, which was manufactured by using the magnetic core materials prepared in this study, at low frequency range, was influenced strongly by magnetic property of magnetic core materials as this result is corresponding to the permeability as a function of heat treatment temperature, as well, it was improved by impedance matching at high frequency range. Over $500{\mu}m$ of air gap in coupler is required to maintain the magnetic properties without magnetic saturation on the subterranean line transferred hish current of 300 A. The inductive coupler for PLC, which has an attenuation characteristics of less than 5dB, was manufactured using nano-crystalline magnetic core materials through the above mentioned research results.

Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites (목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성)

  • Son, Jungil;Gardner, Douglas J.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The main goal of this study was to analyze the effect of process additives, i.e. maleated polypropylene (MAPP), and nucleating agent on the viscoelastic properties of different types of extruded polypropylene-wood plastic composites manufactured from either PP homopolymer, high crystallinity PP or PP impact copolymer using dynamic mechanical thermal analysis. And also, the esterification reaction between wood flour and maleated polypropylene, and its role in determining the mechanical properties of wood flour-polypropylene composites was investigated. The wood plastic composites were manufactured using 60% pine wood flour and 40% polypropylene on a Davis-Standard $Woodtruder^{TM}$. Dynamic mechanical thermal properties, polymer damping peaks(than ${\delta}$), storage modulus (E') and loss modulus (E") were measured using a dynamic mechanical thermal analyzer. XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis) study of wood flour treated with MAPP was performed to obtain information on the chemical nature of wood fiber before and after treatment. To analyze the effect of frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of -20 to $100^{\circ}C$, at four different frequencies (1, 5, 10 and 25 Hz), and at a heating rate of $5^{\circ}C/min$. From these results, the activation energy of the various composite was measured using an Arrhenius relationship to investigate the effect of maleated PP and nucleating agent on the measurement of the interphase between the wood and plastic of the extruded polypropylene wood plastic composites.

  • PDF

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Stability and Isolation of Monacolin K from Red Yeast Rice (홍국 유래 Monacolin K의 안정성 및 분리)

  • 최무영;곽은정;임성일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.6
    • /
    • pp.1022-1027
    • /
    • 2004
  • The monacolin K content was determined to investigate the stability of monacolin K from red yeast rice after heating (20∼8$0^{\circ}C$), adjusting the pH (2∼8) by adding 3 N HCl or 3 N NaOH, adding the organic acid (6.0% acetic acid, 0.6% citric acid, 1.5% lactic acid) to pH 4.0 and adding the water (0∼80%). And the monacolin K was isolated from red yeast rice by conducting open column chromatography using neutral aluminum oxide. As a result, the stability of monacolin K decreased with increasing the temperature. The stability for pH was in the order of the unadjusted pH (pH 5.9)>8>4 and pH 2>10. The stability for organic acid was high in the order of lactic acid>citric acid>acetic acid, and the stability of monacolin K under acid was different according to the acid type. The degradation rate of monacolin K increased with increasing the water content. Moreover monacolin K was able to isolate from red and pink pigments as well as the other noncoloric compounds in red yeast rice. The yield of monacolin K was found to be 70%.

Variation of Water Content and Thermal Behavior of Talc Upon Grinding: Effect of Repeated Slip on Fault Weakening (활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향)

  • Kim, Min Sik;Kim, Jin Woo;Kang, Chang Du;So, Byung Dal;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.201-211
    • /
    • 2019
  • The particle size and crystallinity of fault gouge generally decreases with slip. Phyllosilicates including talc are known to be present in fault gouge and play an important role in fault weakening. In particular, the coefficient of friction varies depending on the presence of a water molecule on the surface of mineral. The purpose of this study is to investigate the effect of talc on fault weakening by changing the water content and dehydration behavior of talc before and after grinding, which systematically varied particle size and crystallinity using high energy ball mill. Infrared spectroscopy and thermal analysis show that the as-received talc is hydrophobic before grinding and the water molecule is rarely present. After grinding up to 720 minutes, the particle size decreased to around 100 ~300 nm, and in talc, where amorphization proceeded, the water content increased by about 8 wt.% and water molecule would be attached on the surface of talc. As a result, the amount of vaporized water by heating increased after grinding. The dihydroxylation temperature also decreased by ${\sim}750^{\circ}C$ after 720 minutes of grinding at ${\sim}950^{\circ}C$ before grinding due to the decrease of particle size and crystallinity. These results indicate that the hydrophobicity of talc is changed to hydrophilic by grinding, and water molecules attached on the surface, which is thought to lower the coefficient of friction of phyllosilicates. The repeated slip throughout the seismic cycle would consistently lower the coefficient of friction of talc present in fault gouge, which could provide the clue to the weakening of matured fault.

Fabrication of Mineral Coating for Slow-releasing Action and Characteristic (완효성을 위한 광물질 피복의 제조와 용출특성연구)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Choi, Jong-Myung;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • Porous mineral coating have been fabricated and applied for basic research on their slow release action to a fertilizer. Feldspar was selected as raw mineral for the coating and two different particle sizes of powder were prepared. Slow-release action was estimated by using a potassium sulfate fertilizer. Spherical pellets were prepared with a pan-type pelletizer and then screened into sizes ranging 1.4 to 2.35mm. While the fertilizer pellets were rotated in the pelletizer again, the feldspar powder and 0.5% polyvinyl alcohol solution were simultaneously sprayed on the pellets. The fertilizer pellets coated with feldspar powder were fabricated. The pellets were heated to increase their strength and screened to sort by coating thickness. Potassium releasing tests were conducted for 40 days and the performance for slow-release action was estimated as functions of the heating temperature, coating thickness and raw mineral powder size. The Burst effect caused high initial releasing rate. Releasing kinetics was proportional to concentration of potassium in pellets. The pellet that was fabricated with $27.4{\mu}m$-sized feldspar and heated at $1050^{\circ}C$ showed a releasing rate of 43% on the 40th day.

Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy (열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발)

  • HWANG, Un Taek;BAE, Junsoo;LEE, Taekyeong;HWANG, Sung-Yun;KIM, Jong-Chan;PARK, Jinseok;CHOI, In-Gyu;KWAK, Hyo Won;HWANG, Sung-Wook;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.213-225
    • /
    • 2021
  • In this paper, we investigated the carbonization characteristics of lignin hydrochar prepared by hydrothermal carbonization and established a model for predicting the carbonization degree using near-infrared spectroscopy and partial least squares regression. The carbon content of the hydrothermally carbonized lignin at the temperature of 200 ℃ was higher by approximately 3 wt% than that of the untreated sample, and the carbon content tended to gradually increase as the heating time increased. Hydrothermal carbonization made lignin more carbon-intensive and more homogeneous by eliminating the microparticles. The discriminant and predictive models using near-infrared spectroscopy and partial least squares regression approppriately determined whether hydrothermal carbonization has been applied and predicted the carbon content of hydrothermal carbonized lignin with high accuracy. In this study, we confirmed that we can quickly and nondestructively predict the carbonization characteristics of lignin hydrochar manufactured by hydrothermal carbonization using a partial least squares regression model combined with near-infrared spectroscopy.

Determination of Thermal Radiation Emissivity and Absorptivity of Thermal Screens for Greenhouse (온실 스크린의 장파복사 방사율 및 흡수율 결정)

  • Rafiq, Adeel;Na, Wook Ho;Rasheed, Adnan;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.311-321
    • /
    • 2019
  • Greenhouse farmers often use thermal screens to reduce greenhouse heating expenses during the winter, and for shade during hot, sunny days in the summer, as it is an inexpensive solution to temperature control relative to other available options. However, accurate measurements of their emitted and absorbed radiations are important for the selection of suitable screens that offer maximum performance. Material's ability to save energy is highly dependent on these properties. Limited studies have investigated the measurement of these properties under natural conditions, but they are only applicable to materials having partial porosities. In this work, we describe a new radiation balance method for determining emissive power and absorptive capacity, as well as reflectivity, transmissivity and emissivity of materials having complete and partial transparency by using pyrgeometer and net radiometer. In this study, four materials with zero porosity, were tested. The emissivity value of PE, LD-13, LD-15 and PH-20 was $0.439{\pm}0.020$, $0.460{\pm}0.010$, $0.454{\pm}0.004$, and $0.499{\pm}0.006$, respectively. All tested samples showed high emitted radiation as compared to absorbed radiation.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.