DOI QR코드

DOI QR Code

Variation of Water Content and Thermal Behavior of Talc Upon Grinding: Effect of Repeated Slip on Fault Weakening

활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향

  • Kim, Min Sik (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Kim, Jin Woo (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Kang, Chang Du (Department of Geoenvironmental Sciences, Kongju National University) ;
  • So, Byung Dal (Department of Geophysics, Kangwon National University) ;
  • Kim, Hyun Na (Department of Geoenvironmental Sciences, Kongju National University)
  • 김민식 (공주대학교 지질환경과학과) ;
  • 김진우 (공주대학교 지질환경과학과) ;
  • 강창두 (공주대학교 지질환경과학과) ;
  • 소병달 (원대학교 지구물리학과) ;
  • 김현나 (공주대학교 지질환경과학과)
  • Received : 2019.09.02
  • Accepted : 2019.09.20
  • Published : 2019.09.30

Abstract

The particle size and crystallinity of fault gouge generally decreases with slip. Phyllosilicates including talc are known to be present in fault gouge and play an important role in fault weakening. In particular, the coefficient of friction varies depending on the presence of a water molecule on the surface of mineral. The purpose of this study is to investigate the effect of talc on fault weakening by changing the water content and dehydration behavior of talc before and after grinding, which systematically varied particle size and crystallinity using high energy ball mill. Infrared spectroscopy and thermal analysis show that the as-received talc is hydrophobic before grinding and the water molecule is rarely present. After grinding up to 720 minutes, the particle size decreased to around 100 ~300 nm, and in talc, where amorphization proceeded, the water content increased by about 8 wt.% and water molecule would be attached on the surface of talc. As a result, the amount of vaporized water by heating increased after grinding. The dihydroxylation temperature also decreased by ${\sim}750^{\circ}C$ after 720 minutes of grinding at ${\sim}950^{\circ}C$ before grinding due to the decrease of particle size and crystallinity. These results indicate that the hydrophobicity of talc is changed to hydrophilic by grinding, and water molecules attached on the surface, which is thought to lower the coefficient of friction of phyllosilicates. The repeated slip throughout the seismic cycle would consistently lower the coefficient of friction of talc present in fault gouge, which could provide the clue to the weakening of matured fault.

단층 비지는 단층의 미끌림에 의해 입도와 결정도가 낮아지는 특성을 가지는 것으로 알려져 있다. 활석을 비롯한 층상규산염 광물은 단층 비지에 존재하며 단층 약화에서 중요한 역할을 할 수 있는데, 특히 광물 표면에 흡착된 물분자의 존재 여부에 따라 마찰계수가 달라진다. 본 연구에서는 고에너지 볼 밀을 이용해 입도와 결정도를 체계적으로 변화시킨, 분쇄 전후 활석의 함수율과 탈수반응 거동의 변화를 통해 활석이 단층 약화에 미치는 영향에 대해 알아보고자 하였다. 적외선 분광분석 및 열분석 결과, 분쇄 전 활석은 소수성을 띠며 물분자가 거의 존재하지 않는다. 이후 최대 720분까지 진행된 분쇄를 통해 입도가 약 100~300 nm 내외까지 감소하고 비정질화가 진행된 활석에서는 물분자에 의한 함수량이 분쇄 전에 비하여 약 8 wt.% 증가하였다. 또한 분쇄된 시료를 가열할 경우, 분쇄 전에 비하여 기화되는 수증기의 양이 증가한다. 입도 및 결정도 감소에 따라 탈수산기 반응 온도도 분쇄 전 약 $900^{\circ}C$에서 720분 분쇄 후 약 $800^{\circ}C$로 감소하였다. 이와 같이 분쇄된 활석의 입도 및 결정도 감소에 의해 소수성이 친수성으로 바뀌며 층상 규산염 광물의 마찰계수를 낮출 것으로 생각된다. 지진 사이클을 통해 반복되는 단층의 미끌림은 지속적으로 단층 비지에 존재하는 활석의 마찰 계수를 낮출 것으로 생각되며, 오래된 단층이 점점 약화되는 원인에 대한 실마리를 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. Boskovic, S., Gasic, M., Nikolic, V., and Ristic, M. (1968) The structural changes of talc during heating. Proceedings of the British Ceramic Society, 10, 1-12.
  2. Boutareaud, S., Hirose, T., Andreani, M., Pec, M., Calugaru, D.-G., Boullier, A.-M., and Doan, M.-L. (2012) On the role of phyllosilicates on fault lubrication: Insight from micro- and nanostructural investigations on talc friction experiments. Journal of Geophysical Research: Solid Earth, 117(B8).
  3. Brigatti, M.F., Galan, E., and Theng, B.K.G. (2006) Structures and mineralogy of clay minerals. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (eds.), Developments in Clay Science, 1, Elsevier, 19-86.
  4. Chen, X., Elwood Madden, A.S., and Reches, Z.E. (2017) The frictional strength of talc gouge in high-velocity shear experiments. Journal of Geophysical Research: Solid Earth, 122, 3661-3676. https://doi.org/10.1002/2016JB013676
  5. Collettini, C., Viti, C., Smith, S.A., and Holdsworth, R.E. (2009) Development of interconnected talc networks and weakening of continental low-angle normal faults. Geology, 37, 567-570. https://doi.org/10.1130/G25645A.1
  6. Ersoy, B., Dikmen, S., Yildiz, A., Gören, R., and Elitok, O. (2013) Mineralogical and physicochemical properties of talc from Emirdag, Afyonkarahisar, Turkey. Turkish Journal of Earth Sciences, 22, 632-644.
  7. Giorgetti, C., Carpenter, B.M., and Collettini, C. (2015) Frictional behavior of talc-calcite mixtures. Journal of Geophysical Research: Solid Earth, 120, 6614-6633. https://doi.org/10.1002/2015JB011970
  8. Han, R., Shimamoto, T., Hirose, T., Ree, J.H., and Ando, J. (2007) Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316, 878-881 https://doi.org/10.1126/science.1139763
  9. Hirauchi, K.-i., den Hartog, S.A.M., and Spiers, C.J. (2013) Weakening of the slab-mantle wedge interface induced by metasomatic growth of talc. Geology, 41, 75-78. https://doi.org/10.1130/G33552.1
  10. Hirose, T. and Bystricky, M. (2007) Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34(14).
  11. Kim, J.W., Lee, B.H., Kim, J.C., and Kim, H.N. (2018) Particle size analysis of nano-sized talc prepared by mechanical milling using high-energy ball mill. Journal of the Mineralogical Society of Korea, 31, 47-55 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2018.31.1.47
  12. Lee, S.K., Han, R., Kim, E.J., Jeong, G.Y., Khim, H., and Hirose, T. (2017) Quasi-equilibrium melting of quartzite upon extreme friction. Nature Geoscience, 10, 436. https://doi.org/10.1038/ngeo2951
  13. Liao, J. and Senna, M. (1992) Thermal behavior of mechanically amorphized talc. Thermochimica Acta, 197, 295-306. https://doi.org/10.1016/0040-6031(92)85028-T
  14. Moore, D.E. and Lockner, D.A. (2004) Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research: Solid Earth, 109(B3).
  15. Moore, D.E. and Lockner, D.A. (2008) Talc friction in the temperature range $25-400^{\circ}C$: Relevance for Fault-Zone Weakening. Tectonophysics, 449, 120-132. https://doi.org/10.1016/j.tecto.2007.11.039
  16. Moore, D.E. and Lockner, D.A. (2011) Frictional strengths of talc-serpentine and talc-quartz mixtures. Journal of Geophysical Research: Solid Earth, 116(B1).
  17. Moore, D.E. and Rymer, M.J. (2007) Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448, 795. https://doi.org/10.1038/nature06064
  18. Morrow, C.A., Moore, D.E., and Lockner, D.A. (2000) The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, 27, 815-818. https://doi.org/10.1029/1999GL008401
  19. Niemeijer, A., Marone, C., and Elsworth, D. (2010) Fabric induced weakness of tectonic faults. Geophysical Research Letters, 37(3).
  20. Perez-Maqueda, L.A., Duran, A., and Perez-Rodriguez, J.L. (2005) Preparation of submicron talc particles by sonication. Applied Clay Science, 28, 245-255. https://doi.org/10.1016/j.clay.2004.01.012
  21. Peacock, S.M. (1987) Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: Implications for subduction zones. Contributions to Mineralogy and Petrology, 95, 55-70. https://doi.org/10.1007/BF00518030
  22. Rice, J.R. (2006) Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5).
  23. Rotenberg, B., Patel, A.J., and Chandler, D. (2011) Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. Journal of the American Chemical Society, 133, 20521-20527. https://doi.org/10.1021/ja208687a
  24. Shirozu, H., Sakasegawa, T., Katsumoto, N., and Ozaki, M. (1975) Mg-chlorite and interstratified Mg-chlorite/saponite associated with kuroko deposits. Clay Science, 4, 305-321.
  25. Viti, C. (2011) Exploring fault rocks at the nanoscale. Journal of Structural Geology, 33, 1715-1727. https://doi.org/10.1016/j.jsg.2011.10.005
  26. Viti, C. and Collettini, C. (2009) Growth and deformation mechanisms of talc along a natural fault: A micro/nanostructural investigation. Contributions to Mineralogy and Petrology, 158, 529. https://doi.org/10.1007/s00410-009-0395-4
  27. Wesolowski, M. (1984) Thermal decomposition of talc: A review. Thermochimica Acta, 78, 395-421. https://doi.org/10.1016/0040-6031(84)87165-8
  28. Wu, F.T., Blatter, L., and Roberson, H. (1975) Clay gouges in the San Andreas fault system and their possible implications. In: Wyss, M., (ed.), Earthquake Prediction and Rock Mechanics, Birkhauser Basel, 87-95pp.
  29. Zazenski, R., Ashton, W.H., Briggs, D., Chudkowski, M., Kelse, J.W., Maceachern, L., McCarthy, E.F., Nordhauser, M.A., Roddy, M.T., Teetsel, N.M., Wells, A.B., and Gettings, S.D. (1995) Talc: Occurrence, characterization, and consumer applications. Regulatory Toxicology and Pharmacology, 21, 218-229. https://doi.org/10.1006/rtph.1995.1032

Cited by

  1. Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill vol.9, pp.11, 2019, https://doi.org/10.3390/min9110668