References
- Boskovic, S., Gasic, M., Nikolic, V., and Ristic, M. (1968) The structural changes of talc during heating. Proceedings of the British Ceramic Society, 10, 1-12.
- Boutareaud, S., Hirose, T., Andreani, M., Pec, M., Calugaru, D.-G., Boullier, A.-M., and Doan, M.-L. (2012) On the role of phyllosilicates on fault lubrication: Insight from micro- and nanostructural investigations on talc friction experiments. Journal of Geophysical Research: Solid Earth, 117(B8).
- Brigatti, M.F., Galan, E., and Theng, B.K.G. (2006) Structures and mineralogy of clay minerals. In: Bergaya, F., Theng, B.K.G. and Lagaly, G. (eds.), Developments in Clay Science, 1, Elsevier, 19-86.
- Chen, X., Elwood Madden, A.S., and Reches, Z.E. (2017) The frictional strength of talc gouge in high-velocity shear experiments. Journal of Geophysical Research: Solid Earth, 122, 3661-3676. https://doi.org/10.1002/2016JB013676
- Collettini, C., Viti, C., Smith, S.A., and Holdsworth, R.E. (2009) Development of interconnected talc networks and weakening of continental low-angle normal faults. Geology, 37, 567-570. https://doi.org/10.1130/G25645A.1
- Ersoy, B., Dikmen, S., Yildiz, A., Gören, R., and Elitok, O. (2013) Mineralogical and physicochemical properties of talc from Emirdag, Afyonkarahisar, Turkey. Turkish Journal of Earth Sciences, 22, 632-644.
- Giorgetti, C., Carpenter, B.M., and Collettini, C. (2015) Frictional behavior of talc-calcite mixtures. Journal of Geophysical Research: Solid Earth, 120, 6614-6633. https://doi.org/10.1002/2015JB011970
- Han, R., Shimamoto, T., Hirose, T., Ree, J.H., and Ando, J. (2007) Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316, 878-881 https://doi.org/10.1126/science.1139763
- Hirauchi, K.-i., den Hartog, S.A.M., and Spiers, C.J. (2013) Weakening of the slab-mantle wedge interface induced by metasomatic growth of talc. Geology, 41, 75-78. https://doi.org/10.1130/G33552.1
- Hirose, T. and Bystricky, M. (2007) Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34(14).
- Kim, J.W., Lee, B.H., Kim, J.C., and Kim, H.N. (2018) Particle size analysis of nano-sized talc prepared by mechanical milling using high-energy ball mill. Journal of the Mineralogical Society of Korea, 31, 47-55 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2018.31.1.47
- Lee, S.K., Han, R., Kim, E.J., Jeong, G.Y., Khim, H., and Hirose, T. (2017) Quasi-equilibrium melting of quartzite upon extreme friction. Nature Geoscience, 10, 436. https://doi.org/10.1038/ngeo2951
- Liao, J. and Senna, M. (1992) Thermal behavior of mechanically amorphized talc. Thermochimica Acta, 197, 295-306. https://doi.org/10.1016/0040-6031(92)85028-T
- Moore, D.E. and Lockner, D.A. (2004) Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research: Solid Earth, 109(B3).
-
Moore, D.E. and Lockner, D.A. (2008) Talc friction in the temperature range
$25-400^{\circ}C$ : Relevance for Fault-Zone Weakening. Tectonophysics, 449, 120-132. https://doi.org/10.1016/j.tecto.2007.11.039 - Moore, D.E. and Lockner, D.A. (2011) Frictional strengths of talc-serpentine and talc-quartz mixtures. Journal of Geophysical Research: Solid Earth, 116(B1).
- Moore, D.E. and Rymer, M.J. (2007) Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448, 795. https://doi.org/10.1038/nature06064
- Morrow, C.A., Moore, D.E., and Lockner, D.A. (2000) The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, 27, 815-818. https://doi.org/10.1029/1999GL008401
- Niemeijer, A., Marone, C., and Elsworth, D. (2010) Fabric induced weakness of tectonic faults. Geophysical Research Letters, 37(3).
- Perez-Maqueda, L.A., Duran, A., and Perez-Rodriguez, J.L. (2005) Preparation of submicron talc particles by sonication. Applied Clay Science, 28, 245-255. https://doi.org/10.1016/j.clay.2004.01.012
- Peacock, S.M. (1987) Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: Implications for subduction zones. Contributions to Mineralogy and Petrology, 95, 55-70. https://doi.org/10.1007/BF00518030
- Rice, J.R. (2006) Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5).
- Rotenberg, B., Patel, A.J., and Chandler, D. (2011) Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. Journal of the American Chemical Society, 133, 20521-20527. https://doi.org/10.1021/ja208687a
- Shirozu, H., Sakasegawa, T., Katsumoto, N., and Ozaki, M. (1975) Mg-chlorite and interstratified Mg-chlorite/saponite associated with kuroko deposits. Clay Science, 4, 305-321.
- Viti, C. (2011) Exploring fault rocks at the nanoscale. Journal of Structural Geology, 33, 1715-1727. https://doi.org/10.1016/j.jsg.2011.10.005
- Viti, C. and Collettini, C. (2009) Growth and deformation mechanisms of talc along a natural fault: A micro/nanostructural investigation. Contributions to Mineralogy and Petrology, 158, 529. https://doi.org/10.1007/s00410-009-0395-4
- Wesolowski, M. (1984) Thermal decomposition of talc: A review. Thermochimica Acta, 78, 395-421. https://doi.org/10.1016/0040-6031(84)87165-8
- Wu, F.T., Blatter, L., and Roberson, H. (1975) Clay gouges in the San Andreas fault system and their possible implications. In: Wyss, M., (ed.), Earthquake Prediction and Rock Mechanics, Birkhauser Basel, 87-95pp.
- Zazenski, R., Ashton, W.H., Briggs, D., Chudkowski, M., Kelse, J.W., Maceachern, L., McCarthy, E.F., Nordhauser, M.A., Roddy, M.T., Teetsel, N.M., Wells, A.B., and Gettings, S.D. (1995) Talc: Occurrence, characterization, and consumer applications. Regulatory Toxicology and Pharmacology, 21, 218-229. https://doi.org/10.1006/rtph.1995.1032
Cited by
- Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill vol.9, pp.11, 2019, https://doi.org/10.3390/min9110668