DOI QR코드

DOI QR Code

The Effective Recovery of Gold from the Invisible Gold Concentrate Using Microwave-nitric Acid Leaching Method

마이크로웨이브-질산침출방법에 의한 비가시성 금의 회수율 향상

  • Lee, Jong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Myung, Eun-Ji (Department of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 이종주 (조선대학교 에너지.자원공학과) ;
  • 명은지 (조선대학교 에너지.자원공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2019.06.04
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

This study aimed to liberate gold from invisible gold concentrate (Au = 1,840.00 g/t) through microwave nitric acid leaching experiments. For the purpose, this study conducted microwave-nitric acid leaching experiments and examined nitric acid concentration effect, microwave leaching time effect and sample addition effect. The results of the experiments were as follows: Au (gold) contents were not detected in all of the microwave leaching conditions. In the insoluble-residue, weight loss rate tended to decrease as the nitric acid concentration, microwave leaching time and sample addition increased. In an XRD analysis with solid-residue, it was suggested that gypsum and anglesite were formed due to dissolution of calcite and galena by nitric acid solution. When a fire assay was carried out with insoluble-residue, it was discovered that gold contents of the solid-residue were 1.3 (Au = 2,464.70 g/t) and 28.8 (52,952.80 g/t) times more than those of concentrate. But in the gold contents recovered, a severe gold nugget effect appeared. It is expected that the gold nugget effect will decrease if a sampling method of concentrate is improved in the microwave-nitric acid leaching experiments and filtering paper with smaller pore size is used for leaching solution and burned filter paper is used for sampling in lead-fire assay.

본 연구목적은 비-가시성 금 정광(Au = 1,840.00 g/t)으로부터 금을 단체분리 시키기 위하여 마이크로웨이브-질산침출 실험을 수행하였다. 이를 위해 질산농도 효과, 마이크로웨이브 침출시간 효과 그리고 시료 첨가량 효과에 대하여 마이크로웨이브-질산침출 실험을 수행하였다. 본 연구의 실험조건에서는 금이 전혀 침출되지 않은 것으로 조사되었다. 불용성-잔류물의 무게는 질산 농도, 마이크로웨이브 침출시간 그리고 시료 첨가량이 증가할수록 감소하는 경향으로 나타났다. 불용성-잔류물에 대하여 XRD 분석한 결과 석고와 anglesite가 나타나는데 이는 정광에 포함된 방해석과 방연석이 질산용액과 반응하여 생성된 것으로 사료된다. 불용성-잔류물에 대하여 납-시금법을 수행한 결과 정광보다 금함량이 최소 1.3배(Au = 2,464.70 g/t)에서 최대 28.8배(52,952.80 g/t)로 높게 나타났다. 그러나 납-시금법에서 회수된 금 함량은 gold nugget effect가 매우 심하게 나타났다. 향후, 마이크로웨이브-질산침출 실험에서 정광의 시료채취 방법을 개선하고, 더 작은 기공 크기의 여과지를 사용하여 침출용액을 여과하고 납-시금법에서 여과지를 태워서 시료로 투입하는 방법을 수행한다면 gold nugget effect를 감소시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Azimi, G. and Papangelakis, V.G. (2011) Mechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutions. Hydrometallurgy, 108, 122-129. https://doi.org/10.1016/j.hydromet.2011.03.007
  2. Bakken, B.M., Hochella, M.F., Marshall, A.F., and Turner, A.M. (1989) High-resolution microscopy of gold in unoxidized ore from the Carlin mine, Nevada. Economic Geology, 84, 171-179. https://doi.org/10.2113/gsecongeo.84.1.171
  3. Barker, S.L.L., Hickey, K.A., Cline, J., Dipple, G.M., Kilburn, M.R., Vaughan, J.R., and Longo, A.A. (2010) Uncloaking invisible gold: Use of nanoSIMS to evaluate gold, trace elements and sulfur isotopes in pyrite from Carlin-type gold deposits. MDRU Carlin Footprints Project-final Technical Report-September 2010, 301-310.
  4. Bayca, S.U. (2013) Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and Purification Technology, 105, 24-32. https://doi.org/10.1016/j.seppur.2012.11.014
  5. Carrasco, P.C. (2010) Nugget effect, artificial or natural? The Journal of the Southern African Institute of Mining and Metallurgy, 110, 299-305.
  6. Chen, C.S., Shin, Y.J., and Huang, Y.H. (2016) Recovery of lead from smelting fly ash of waste lead-acid battery by leaching and electroeinning. Waste Management, 52, 212-220. https://doi.org/10.1016/j.wasman.2016.03.056
  7. Chen, T.T., Cabri, L.J., and Dutrizac, J.E. (2002) Characterizing gold in refractory sulfide gold ores and residues. JOM, December, 20-22.
  8. Chryssoulis, S., Dunne, R., and Coetzee, A., 2004, Diagnostic microbeam technology in gold ore processing. JOM, July, 53-57.
  9. Clark, I. (2010) Statistics or geostatistics? sampling error or nugget effect? Journal of the Southern African Institute of Mining and Metallurgy, 110, 307-312.
  10. Coetzee, L.L., Theron, S.J., van der merwe, J.D., and Stanek, T.A. (2011) Modern gold deportments and its application to industry. Minerals Engineering, 24, 565-575. https://doi.org/10.1016/j.mineng.2010.09.001
  11. Craw, D. and Lilly, K. (2016) Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. Ore Geology Reviews, 79, 301-315. https://doi.org/10.1016/j.oregeorev.2016.06.001
  12. de Andrade Lima, L.R.P., Bernardez, L.A., and Barbosa, L.A.D. (2008) Characterization and treatment of artisanal gold mine tailings. Journal of Hazardous Materials, 150, 747-753. https://doi.org/10.1016/j.jhazmat.2007.05.028
  13. Dominy, S.C. (2014) Predicting the unpredictable-evaluating high-nugget effect gold deposits. Mineral Resource and Ore Reserve Estimation. Chapter 8 Monitoring and Exploiting the Reserve, 659-678.
  14. Dominy, S.C., Platten, I.M., and Raine, M.D. (2003) Grade and geological continuity in high-nugget effect gold-quartz reefs: Implications for resource estimation and reporting. Applied Earth Science, 112, B239-B259. https://doi.org/10.1179/037174503225003116
  15. Dominy, S.C., Platten, I.M., and Raine, M.D. (2003) Grade and geological continuity in high-nugget effect gold-quartz reefs: Implications for resource estimation and reporting. Applied Earth Science, 112, B239-B259. https://doi.org/10.1179/037174503225003116
  16. Dominy, S.C., Stephenson, P.R., and Annels, A.E. (2001) Classification and reporting of mineral resources for high-nugget effect gold vein deposits. Explor. Mining Geol., 10, 215-233. https://doi.org/10.2113/0100215
  17. Gao, G., Li, D., Zhou, Y., Sun, X., and Sun, W. (2009) Kinetics of high-sulphur and high-arsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions. Minerals Engineering, 22, 111-115. https://doi.org/10.1016/j.mineng.2008.05.001
  18. Haque, K. E. (1999) Microwave energy for mineral treatment processes - A brief review. International Journal of Mineral Processing, 57, 1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
  19. Hough, R.M., Noble, R.R.P., and Erich, M. (2011) Natural gold nanoparticles. Ore Geology Reviews, 42, 55-61. https://doi.org/10.1016/j.oregeorev.2011.07.003
  20. Huang, J.H. and Rowson, N.A. (2002) Hydrometallurgical decomposition of pyrite and marcasite in a microwave field. Hydrometallurgy, 64, 169-179. https://doi.org/10.1016/S0304-386X(02)00041-5
  21. Ibrahim, T.M.M. and El-Hussaini, O.M. (2007) Production of anhydrite-gypsum and recovery of rare earths as a by-product. Hydrometallurgy, 87, 11-17. https://doi.org/10.1016/j.hydromet.2006.11.017
  22. Jotanovic, A., memic, M., Suljagic, S., and Huremovic, J. (2012) Comparison of x-ray fluorescent analysis and cupellation method for determination of gold in gold jewellery alloy. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 38, 13-18.
  23. Karaca, S., Akyurek, M., and Bayrakceken, S. (2003) The removal of pyritic sulfur from Askale lignite in aqueous suspension by nitric acid. Fuel Processing Technology, 80, 1-8. https://doi.org/10.1016/S0378-3820(02)00026-7
  24. Kim, E., Horckmans, L., Soppren, J., Vrancken, K.C., Quaghebeur, M., and Broos, K. (2017) Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues. Hydrometallurgy, 169, 372-381. https://doi.org/10.1016/j.hydromet.2017.02.027
  25. Komnitsas, C. and Pooley, F.D. (1989) Mineralogical characteristics and treatment of refractory gold ores. Minerals Engineering, 2, 449-457. https://doi.org/10.1016/0892-6875(89)90080-0
  26. Levenspiel, O. (1999) Chemical Reaction Engineering, John Wiley & Sons, 668p.
  27. Marinova, I., Ganev, V., and Titorenkova, R. (2014) Colloidal origin of colloform-banded textures in the paleogene low-sulfidation Khan Krum gold deposit. SE Bulgaria, Miner Deposita, 49, 49-74. https://doi.org/10.1007/s00126-013-0473-4
  28. McDonald, I., Hart, R.J., and Tredoux, M. (1994) Determination of the platinum-group elements in South African kimberites by nickel sulphide fire-assay and neutron activation analysis. Analytical Chimica Acta, 289, 237-247. https://doi.org/10.1016/0003-2670(94)80108-8
  29. Mclntosh, K.S. (2004) The system engineering of automated fire assay laboratories for the analysis of the precious metals. Doctor of Philosophy, in the Department of Process Engineering at the University of Stellenbosch, South Africa.
  30. Morishita, Y., Shimada, N., and Shimada, K. (2018) Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geology reviews, 95, 79-93. https://doi.org/10.1016/j.oregeorev.2018.02.029
  31. Ofori-Sarpong, G. and Amankwah, R.K. (2011) Comminution environment and gold particle morphology: Effects on gravity concentration. Minerals Engineering, 24, 590-592. https://doi.org/10.1016/j.mineng.2011.02.014
  32. Palenink, C., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L., and Ewing, R.C. (2004) "Invisible" gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit, American Mineralogist, 89, 1359-1366. https://doi.org/10.2138/am-2004-1002
  33. Pironon, J., Dubessy, J., Sterpenich, J., Robert, P., Parmentier, M., Lassin, A., Renard, S., Bouquet, S., Andjar, K., and Randi, A. (2013) Dehydration of gypsum under dry $CO_2$ injection. Energy Procedia, 37, 4575-4582. https://doi.org/10.1016/j.egypro.2013.06.365
  34. Rao, C.R.M. and Reddi, G.S. (2000) Platinum group metals(PGM); Occurrence, use and recent trends in their determination. Trends in Analytical Chemistry, 19, 565-586. https://doi.org/10.1016/S0165-9936(00)00031-5
  35. Reich, M., kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
  36. Reich, M., Utsunomiya, S., Kesler, S.E., Wang, L., Ewing, R.C., and Becker, U. (2006) Thermal behavior of metal nanoparticles in geologic materials. Geology, December, 1033-1036.
  37. Sracek, O., Choqette, M., Gelinas, P., Lefebvre, R., and Nicholson, R.V. (2004) Geochemical chalacterization of acid mine drainage from a waste rock pile, mine Doyon, Quebec, Canada. Contaminant Hydrology, 69, 45-71. https://doi.org/10.1016/S0169-7722(03)00150-5
  38. Tang, L., Tang, C., Xiao, J., Zeng, P., and Tang, M. (2018) A cleaner process for valuable metals recovery from hydrometallurgical zinc residue. Journal of Cleaner Production, 201, 764-77. https://doi.org/10.1016/j.jclepro.2018.08.096
  39. Veres, J., jakabsky, S., and Lovas, M. (2010) Comparison of conventional and microwave assisted leaching of zinc from the basic oxygen furnace dust. Minerallia Slovaca, 42, 369-374.
  40. Wang, Y., Baker, L.A., and Brindle, I.D. (2016) Determination of gold and silver in geological samples by focused infrared digestion: A re-investigation of aqua regia digestion. Talanta, 148, 419-426. https://doi.org/10.1016/j.talanta.2015.11.019
  41. Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., and Song, S. (2017) Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600. https://doi.org/10.1016/j.rinp.2017.07.035
  42. Zhai, W., Sun, X., Sun, W., Su, L., He, X., and Wu, Y. (2009) Geology, geochemistry, and genesis of Axi: A paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China. Ore Geology Reviews, 36, 265-281. https://doi.org/10.1016/j.oregeorev.2009.04.003
  43. Zhan, L., Shen, S., Xie, B., and Yang, K. (2019) A novel method of preparing PbS from waste lead paste through in-situ vulcanization and reduction. Journal of Cleaner Production, 208, 778-784. https://doi.org/10.1016/j.jclepro.2018.10.190

Cited by

  1. Observability of Invisible Gold using BSE Imagery and Gold Recovery by Microwave-Nitric Acid Leaching vol.57, pp.1, 2019, https://doi.org/10.32390/ksmer.2020.57.1.001
  2. Liberation of Gold Using Microwave-Nitric Acid Leaching and Separation-Recovery of Native Gold by Hydro-Separation vol.10, pp.4, 2019, https://doi.org/10.3390/min10040327
  3. 마이크로웨이브-질산용출과자력/수력선별에의한자연금및자철석의선별효과 vol.53, pp.2, 2020, https://doi.org/10.9719/eeg.2020.53.2.183